Scaling forms for Relaxation Times of the Fiber Bundle model


Abstract in English

Using extensive numerical analysis of the Fiber Bundle Model with Equal Load Sharing dynamics we studied the finite-size scaling forms of the relaxation times against the deviations of applied load per fiber from the critical point. Our most crucial result is we have not found any $ln (N)$ dependence of the average relaxation time $langle T(sigma,N) rangle$ in the precritical state. The other results are: (i) The critical load $sigma_c(N)$ for the bundle of size $N$ approaches its asymptotic value $sigma_c(infty)$ as $sigma_c(N) = sigma_c(infty) + AN^{-1/ u}$. (ii) Right at the critical point the average relaxation time $langle T(sigma_c(N),N) rangle$ scales with the bundle size $N$ as: $langle T(sigma_c(N),N) rangle sim N^{eta}$ and this behavior remains valid within a small window of size $|Delta sigma| sim N^{-zeta}$ around the critical point. (iii) When $1/N < |Delta sigma| < 100N^{-zeta}$ the finite-size scaling takes the form: $langle T(sigma,N) rangle / N^{eta} sim {cal G}[{sigma_c(N)-sigma}N^{zeta}]$ so that in the limit of $N to infty$ one has $langle T(sigma) rangle sim (sigma - sigma_c)^{-tau}$. The high precision of our numerical estimates led us to verify that $ u = 3/2$, conjecture that $eta = 1/3$, $zeta = 2/3$ and therefore $tau = 1/2$.

Download