Volume-Preserving flow by powers of the mth mean curvature in the hyperbolic space


Abstract in English

This paper concerns closed hypersurfaces of dimension $n(geq 2)$ in the hyperbolic space ${mathbb{H}}_{kappa}^{n+1}$ of constant sectional curvature $kappa$ evolving in direction of its normal vector, where the speed is given by a power $beta (geq 1/m)$ of the $m$th mean curvature plus a volume preserving term, including the case of powers of the mean curvature and of the $mbox{Gauss}$ curvature. The main result is that if the initial hypersurface satisfies that the ratio of the biggest and smallest principal curvature is close enough to 1 everywhere, depending only on $n$, $m$, $beta$ and $kappa$, then under the flow this is maintained, there exists a unique, smooth solution of the flow for all times, and the evolving hypersurfaces exponentially converge to a geodesic sphere of ${mathbb{H}}_{kappa}^{n+1}$, enclosing the same volume as the initial hypersurface.

Download