Do you want to publish a course? Click here

Measurement of the elastoresistivity coefficients of the underdoped iron-arsenide Ba(Fe$_{0.975}$Co$_{0.025}$)$_2$As$_2$

83   0   0.0 ( 0 )
 Added by Hsueh-Hui Kuo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new method is presented for measuring terms in the elastoresistivity tensor $m_{ij}$ of single crystal samples with tetragonal symmetry. The technique is applied to a representative underdoped Fe-arsenide, Ba(Fe$_{0.975}$Co$_{0.025}$)$_2$As$_2$, revealing an anomalously large and anisotropic elastoresistance in comparison to simple metals. The $m_{66}$ coefficient follows a Curie-Weiss temperature dependence, providing direct evidence that the tetragonal-to-orthorhombic structural phase transition that occurs at $T_s$ = 97.5 K in this material is not the result of a true-proper ferro-elastic transition. Rather, the material suffers a pseudo-proper transition for which the lattice strain is not the primary order parameter.



rate research

Read More

Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatures unveils an underlying charge nematic state that extends to superconducting compositions and which has hitherto remained unnoticed. Comparison between the extracted charge nematic susceptibility and the elastic modulus allows us to disentangle the charge contribution to the nematic instability, and to show that charge nematic fluctuations are weakly coupled to the lattice.
Systematic measurements of the resistivity, heat capacity, susceptibility and Hall coefficient are presented for single crystal samples of the electron-doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. These data delineate an $x-T$ phase diagram in which the single magnetic/structural phase transition that is observed for undoped BaFe$_2$As$_2$ at 134 K apparently splits into two distinct phase transitions, both of which are rapidly suppressed with increasing Co concentration. Superconductivity emerges for Co concentrations above $x sim 0.025$, and appears to coexist with the broken symmetry state for an appreciable range of doping, up to $x sim 0.06$. The optimal superconducting transition temperature appears to coincide with the Co concentration at which the magnetic/structural phase transitions are totally suppressed, at least within the resolution provided by the finite step size between crystals prepared with different doping levels. Superconductivity is observed for a further range of Co concentrations, before being completely suppressed for $x sim 0.018$ and above. The form of this $x-T$ phase diagram is suggestive of an association between superconductivity and a quantum critical point arising from suppression of the magnetic and/or structural phase transitions.
131 - S. Ishida , M. Nakajima , T. Liang 2012
We investigated the in-plane resistivity anisotropy for underdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with improved quality. We demonstrate that the anisotropy in resistivity in the magnetostructural ordered phase arises from the anisotropy in the residual component which increases in proportion to the Co concentration $x$. This gives evidence that the anisotropy originates from the impurity scattering by Co atoms substituted for the Fe sites, rather than so far proposed mechanism such as the anisotropy of Fermi velocities of reconstructed Fermi surface pockets. As doping proceeds to the paramagnetic-tetragonal phase, a Co impurity transforms to a weak and isotropic scattering center.
Evidence of nematic effects in the mixed superconducting phase of slightly underdoped $text{Ba}(text{Fe}_{1-x}text{Co}_x)_2text{As}_2$ is reported. We have found strong in-plane resistivity anisotropy for crystals in different strain conditions. For these compositions, there is no magnetic long range order, so the description may be ascribed to the interplay between the superconducting and nematic order parameters. A piezoelectric-based apparatus is used to apply tensile or compressive strain to tune nematic domain orientation in order to examine intrinsic nematicity. Measurements are done under a rotating magnetic field and the analysis of the angular dependence of physical quantities identifies the cases in which the sample is {em detwinned}. Furthermore, the angular dependence of the data allows us to evaluate the effects of nematicity on the in-plane superconductor stiffness. Our results show that although nematicity contributes in a decisive way in the conduction properties, its contributions to the anisotropy properties of the stiffness of the superconducting order parameter is not as significant in these samples.
We report a doping dependent electronic Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals. A strongly anisotropic gap is found at optimal doping for x=0.065 with $Delta_{max}sim 5Delta_{min}$. Upon entering the coexistence region between superconducting (SC) and spin-density-wave (SDW) orders, the effective pairing energy scale is strongly reduced. Our results are interpreted in terms of a competition between SC and SDW orders for electronic state at the Fermi level. Our findings advocate for a strong connection between the SC and SDW gaps anisotropies which are both linked to interband interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا