Do you want to publish a course? Click here

The Build-Up of Nuclear Stellar Cusps in Extreme Starburst Galaxies and Major Mergers

109   0   0.0 ( 0 )
 Added by Sebastian Haan
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nuclear stellar cusps are defined as central excess light component in the stellar light profiles of galaxies and are suggested to be stellar relics of intense compact starbursts in the central ~100-500 pc region of gas-rich major mergers. Here we probe the build-up of nuclear cusps during the actual starburst phase for a complete sample of Luminous Infrared Galaxy systems (85 LIRGs, with 11.4<log[LIR/L_sun]<12.5) in the GOALS sample. Cusp properties are derived via 2-dimensional fitting of the nuclear stellar light imaged in the near-infrared by the Hubble Space Telescope and have been combined with mid-IR diagnostics for AGN/starburst characterization. We find that nuclear stellar cusps are resolved in 76% of LIRGs (merger and non-interacting galaxies). The cusp strength and luminosity increases with far-IR luminosity (excluding AGN) and merger stage, confirming theoretical models that starburst activity is associated with the build-up of nuclear stellar cusps. Evidence for ultra compact nuclear starbursts is found in ~13% of LIRGs, which have a strong unresolved central NIR light component but no significant contribution of an AGN. The nuclear near-IR surface density (measured within 1 kpc radius) increases by a factor of ~5 towards late merger stages. A careful comparison to local early-type galaxies with comparable masses reveals (a) that local (U)LIRGs have a significantly larger cusp fraction and (b) that the majority of the cusp LIRGs have host galaxy luminosities (H-band) similar to core ellipticals which is roughly one order in magnitude larger than for cusp ellipticals.



rate research

Read More

228 - Leila C. Powell 2013
Recent simulation work has successfully captured the formation of the star clusters that have been observed in merging galaxies. These studies, however, tend to focus on studying extreme starbursts, such as the Antennae galaxies. We aim to establish whether there is something special occurring in these extreme systems or whether the mechanism for cluster formation is present in all mergers to a greater or lesser degree. We undertake a general study of merger-induced star formation in a sample of 5 pc resolution adaptive mesh refinement simulations of low redshift equal-mass mergers with randomly-chosen orbital parameters. We find that there is an enhanced mass fraction of very dense gas that appears as the gas density probability density function evolves during the merger. This finding has implications for the interpretation of some observations; a larger mass fraction of dense gas could account for the enhanced HCN/CO ratios seen in ULIRGs and predicts that alpha_CO is lower in mergers, as for a given mass of H_2, CO emission will increase in a denser environment. We also find that as the star formation rate increases, there is a correlated peak in the velocity dispersion of the gas, which we attribute to increasing turbulence driven by the interaction itself. Star formation tends to be clumpy: in some cases there is extended clumpy star formation, but even when star formation is concentrated within the inner kpc (i.e. what may be considered a nuclear starburst) it still often has a clumpy, rather than a smooth, distribution. We find no strong evidence for a clear bimodality in the Kennicutt-Schmidt relation for the average mergers simulated here. Instead, they are typically somewhat offset above the predicted quiescent relation during their starbursts.
We analyse subarcsecond resolution interferometric CO line data for twelve sub-millimetre-luminous (S850um > 5mJy) galaxies with redshifts between 1 and 3, presenting new data for four of them. Morphologically and kinematically most of the twelve systems appear to be major mergers. Five of them are well-resolved binary systems, and seven are compact or poorly resolved. Of the four binary systems for which mass measurements for both separate components can be made, all have mass ratios of 1:3 or closer. Furthermore, comparison of the ratio of compact to binary systems with that observed in local ULIRGs indicates that at least a significant fraction of the compact SMGs must also be late-stage mergers. In addition, the dynamical and gas masses we derive are most consistent with the lower end of the range of stellar masses published for these systems, favouring cosmological models in which SMGs result from mergers. These results all point to the same conclusion, that likely most of the bright SMGs with L_IR > 5x10e12L_sun are major mergers.
We present deep J and Ks band photometry of 20 high redshift galaxy clusters between z=0.8-1.5, 19 of which are observed with the MOIRCS instrument on the Subaru Telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9e11MSol since z~1.5. We investigate the effect on this result of differing star formation histories generated by three well known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter haloes, which predict a more protracted mass build up over a Hubble time. We discuss however that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.
We use two catalogues, a Herschel catalogue selected at 500 mu (HerMES) and an IRAS catalogue selected at 60 mu (RIFSCz), to contrast the sky at these two wavelengths. Both surveys demonstrate the existence of extreme starbursts, with star-formation rates (SFRs) > 5000 Msun/yr. The maximum intrinsic star-formation rate appears to be ~30,000 Msun/yr. The sources with apparent SFR estimates higher than this are in all cases either lensed systems, blazars, or erroneous photometric redshifts. At redshifts of 3 to 5, the time-scale for the Herschel galaxies to make their current mass of stars at their present rate of formation ~ 10^8 yrs, so these galaxies are making a significant fraction of their stars in the current star-formation episode. Using dust mass as a proxy for gas mass, the Herschel galaxies at redshift 3 to 5 have gas masses comparable to their mass in stars. Of the 38 extreme starbursts in our Herschel survey for which we have more complete SED information, over 50% show evidence for QSO-like optical emission, or exhibit AGN dust tori in the mid-infrared SEDs. In all cases however the infrared luminosity is dominated by a starburst component. We derive a mean covering factor for AGN dust as a function of redshift and derive black hole masses and black hole accretion rates. There is a universal ratio of black-hole mass to stellar mass, ~ 10^{-3}, driven by the strong period of star-formation and black-hole growth at z = 1-5.
We analyze the role of bars in the build-up of central mass concentrations in massive, disk galaxies. Our parent sample consists of 3757 face-on disk galaxies with redshifts between 0.01 and 0.05, selected from the seventh Data Release of the Sloan Digital Sky Survey. 1555 galaxies with bars are identified using position angle and ellipticity profiles of the $i$-band light. We compare the ratio of the specific star formation rate measured in the 1-3 kpc central region of the galaxy to that measured for the whole galaxy. Galaxies with strong bars have centrally enhanced star formation; the degree of enhancement depends primarily on the ellipticity of the bar, and not on the size of the bar or on the mass or structure of the host galaxy. The fraction of galaxies with strong bars is highest at stellar masses greater than $3 times 10^{10} M_{odot}$, stellar surface densities less than $3 times 10^8 M_{odot}$ and concentration indices less than 2.5. In this region of parameter space, galaxies with strong bars either have enhanced central star formation rates, or star formation that is {em suppressed} compared to the mean. This suggests that bars may play a role in the eventual quenching of star formation in galaxies. Only 50% of galaxies with strongly concentrated star formation have strong bars, indicating that other processes such as galaxy interactions also induce central star-bursts. We also find that the ratio of the size of the bar to that of the disk depends mainly on the colour of the galaxy, suggesting that the growth and destruction of bars are regulated by gas accretion, as suggested by simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا