Do you want to publish a course? Click here

The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

248   0   0.0 ( 0 )
 Added by Yi-Cai Zhang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance by increasing the Raman coupling strength in experiments.

rate research

Read More

Time evolution of spin-orbit-coupled cold atoms in an optical lattice is studied, with a two-band energy spectrum having two avoided crossings. A force is applied such that the atoms experience two consecutive Landau-Zener tunnelings while transversing the avoided crossings. Stuckelberg interference arises from the phase accumulated during the adiabatic evolution between the two tunnelings. This phase is gauge field-dependent and thus provides new opportunities to measure the synthetic gauge field, which is verified via calculation of spin transition probabilities after a double passage process. Time-dependent and time-averaged spin probabilities are derived, in which resonances are found. We also demonstrate chiral Bloch oscillation and rich spin-momentum locking behavior in this system.
The Zitterbewegung effect in spin-orbit coupled spin-1 cold atoms is investigated in the presence of the Zeeman field and a harmonic trap. It is shown that the Zeeman field and the harmonic trap have significant effect on the Zitterbewegung oscillatory behaviors. The external Zeeman field could suppress or enhance the Zitterbewegung amplitude and change the frequencies of oscillation. A much slowly damping Zitterbewegung oscillation can be achieved by adjusting both the linear and quadratic Zeeman field. Multi-frequency Zitterbewegung oscillation can be induced by the applied Zeeman field. In the presence of the harmonic trap, the subpackets corresponding to different eigenenergies would always keep coherent, resulting in the persistent Zitterbewegung oscillations. The Zitterbewegung oscillation would display very complicated and irregular oscillation characteristics due to the coexistence of different frequencies of the Zitterbewegung oscillation. Numerical results show that, the Zitterbewegung effect is robust even in the presence of interaction between atoms.
We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultra-cold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can then be used to steer the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.
181 - Ming-Yong Ye , Xiu-Min Lin 2012
We consider the simulation of non-abelian gauge potentials in ultracold atom systems with atom-field interaction in the $Lambda$ configuration where two internal states of an atom are coupled to a third common one with a detuning. We find the simulated non-abelian gauge potentials can have the same structures as those simulated in the tripod configuration if we parameterize Rabi frequencies properly, which means we can design spin-orbit coupling simulation schemes based on those proposed in the tripod configuration. We show the simulated spin-orbit coupling in the $Lambda$ configuration can only be of a form similar to $p_{x}sigma_{y}$ even when the Rabi frequencies are not much smaller than the detuning.
We analyze the role played by quantum fluctuations on a Raman Spin-Orbit Coupled system in the stripe phase. We show that beyond mean-field effects stabilize the collapse predicted by mean-field theory and induce the emergence of two phases: a gas and a liquid, which also show spatial periodicity along a privileged direction. We show that the energetically favored phase is determined by the Raman coupling and the spin-dependent scattering lengths. We obtain the ground-state solution of the finite system by solving the extended Gross-Pitaevskii equation and find self-bound, droplet-like solutions that feature internal structure through a striped pattern. We estimate the critical number for binding associated to these droplets and show that their value is experimentally accessible. We report an approximate energy functional in order to ease the evaluation of the Lee-Huang-Yang correction in practical terms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا