Transition from one-dimensional antiferromagnetism to three-dimensional antiferromagnetic order in single-crystalline CuSb$_{2}$O$_{6}$


Abstract in English

Measurements of magnetic susceptibility, heat capacity and thermal expansion are reported for single crystalline CuSb$_{2}$O$_{6}$ in the temperature range $5<T<350$ K. The magnetic susceptibility exhibits a broad peak centered near 60 K that is typical of one-dimensional antiferromagnetic compounds. Long-range antiferromagnetic order at $T_N$ = 8.7 K is accompanied by an energy gap ($Delta$ = 17.48(6) K). This transition represents a crossover from one- to three-dimensional antiferromagnetic behavior. Both heat capacity and the thermal expansion coefficients exhibit distinct jumps at $T_N$, which are similar to those observed at the normal-superconducting phase transition in a superconductor. This behavior is quite unusual, and is presumably associated with a Spin-Peierls transition occurring as a result of three-dimensional phonons coupling with {it Jordan-Wigner-transformed} Fermions.

Download