No Arabic abstract
(abridged) We correlated near-infrared stellar H-Ks colour excesses of background stars from NTT/SOFI with the far-IR optical depth map, tauFIR, derived from Herschel 160, 250, 350, and 500 um data. The Herschel maps were also used to construct a model for the cloud to examine the effect of temperature gradients on the estimated optical depths and dust absorption cross-sections. A linear correlation is seen between the colour H-Ks and tauFIR up to high extinctions (AV ~ 25). The correlation translates to the average extinction ratio A250um/AJ = 0.0014 +/- 0.0002, assuming a standard near-infrared extinction law and a dust emissivity index beta=2. Using an empirical NH/AJ ratio we obtain an average absorption cross-section per H nucleus of sigmaH(250um) = (1.8 +/- 0.3) * 10^(-25) cm^2 / H-atom, corresponding to a cross-section per unit mass of gas kappaG(250 um) = 0.08 +/- 0.01 cm^2 / g. The cloud model however suggests that owing to the bias caused by temperature changes along the line-of-sight these values underestimate the true cross-sections by up to 40% near the centre of the core. Assuming that the model describes the effect of the temperature variation on tauFIR correctly, we find that the relationship between H-Ks and tauFIR agrees with the recently determined relationship between sigmaH and NH in Orion A. The derived far-IR cross-section agrees with previous determinations in molecular clouds with moderate column densities, and is not particularly large compared with some other cold cores. We suggest that this is connected to the core not beng very dense (the central density is likely to be ~10^5 cm^-3) and judging from previous molecular line data, it appears to be at an early stage of chemical evolution.
Context: The study of dust emission at millimeter wavelengths is important to shed light on the dust properties and physical structure of pre-stellar cores, the initial conditions in the process of star and planet formation. Aims: Using two new continuum facilities, AzTEC at the LMT and MUSTANG-2 at the GBO, we aim to detect changes in the optical properties of dust grains as a function of radius for the well-known pre-stellar core L1544. Methods: We determine the emission profiles at 1.1 and 3.3 mm and examine whether they can be reproduced in terms of the current best physical models for L1544. We also make use of various tools to determine the radial distributions of the density, temperature, and the dust opacity in a self-consistent manner. Results: We find that our observations cannot be reproduced without invoking opacity variations. With the new data, new temperature and density profiles, as well as opacity variations across the core, have been derived. The opacity changes are consistent with the expected variations between uncoagulated bare grains, toward the outer regions of the core, and grains with thick ice mantles, toward the core center. A simple analytical grain growth model predicts the presence of grains of ~3-4 um within the central 2000 au for the new density profile.
We present an extinction map of the Polaris molecular cirrus cloud derived from star counts and compare it with the Schlegel et al. (1998) extinction map derived from the far--infrared dust opacity. We find that, within the Polaris cloud, the Schlegel et al. Av values are a factor 2 to 3 higher than the star count values. We propose that this discrepancy results from a difference in $tau_{FIR}/ A_V$ between the diffuse atomic medium and the Polaris cloud. We use the difference in spectral energy distribution, warm for the diffuse atomic medium, cold for the Polaris cloud, to separate their respective contribution to the line of sight integrated infrared emission and find that the $tau_{FIR}/ A_V$ of cold dust in Polaris is on average 4 times higher than the Schlegel et al. value for dust in atomic cirrus. This change in dust property could be interpreted by a growth of fluffy particles within low opacity molecular cirrus clouds such as Polaris. Our work suggests that variations in dust emissivity must be taken into account to estimate Av from dust emission wherever cold infrared emission is present (i.e. molecular clouds).
Exploring the structure and dynamics of cold starless clouds is necessary to understand the different steps leading to the formation of protostars. Because clouds evolve slowly, many of them must be studied in detail to pick up different moments of a clouds lifetime. We study here L1506C in the Taurus region, a core with interesting dust properties which have been evidenced with the PRONAOS balloon-borne telescope. To trace the mass content of L1506C and its kinematics, we mapped the dust emission, and the line emission of two key species, C18O and N2H+ (plus 13CO and C17O). This cloud shows peculiar features: i) a large envelope traced solely by 13CO holding a much smaller core with a strong C18O depletion in its center despite a low maximum opacity (Av~20 mag), ii) extremely narrow C18O lines indicating a low, non-measurable turbulence, iii) contraction traced by C18O itself (plus rotation), iv) unexpectedly, the kinematical signature from the external envelope is opposite to the core one: the 13CO and C18O velocity gradients have opposite directions and opposite profiles (C18O blue peaked, 13CO red peaked). The core is large (r = 3E4 AU) and not very dense (n(H2) ? 5E4 cm-3 or less). This core is therefore not prestellar yet. All these facts suggest that the core is kinematically detached from its envelope and in the process of forming a prestellar core. This is the first time that the dynamical formation of a prestellar core is witnessed. The extremely low turbulence could be the reason for the strong depletion of this core despite its relatively low density and opacity in contrast with undepleted cores such as L1521E which shows a turbulence at least 4 times as high.
Context: In the last years, the H2D+ and D2H+ molecules have gained great attention as probes of cold and depleted dense molecular cloud cores. These ions are at the basis of molecular deuterium fractionation, a common characteristic observed in star forming regions. H2D+ is now routinely observed, but the search for its isotopologue D2H+ is still difficult because of the high frequency of its ground para transition (692 GHz). Aims: We have observed molecular transitions of H2D+ and D2H+ in a cold prestellar core to characterize the roots of deuterium chemistry. Methods: Thanks to the sensitive multi-pixel CHAMP+ receiver on the APEX telescope where the required excellent weather conditions are met, we not only successfully detect D2H+ in the H-MM1 prestellar core located in the L1688 cloud, but also obtain information on the spatial extent of its emission. We also detect H2D+ at 372 GHz in the same source. We analyse these detections using a non-LTE radiative transfer code and a state-of-the-art spin-dependent chemical model. Results: This observation is the first secure detection of D2H+ in space. The emission is moreover extended over several pixels of the CHAMP+ array, i.e. on a scale of at least 40, corresponding to ~ 4800 AU. We derive column densities on the order of 1e12-1e13 cm-2 for both molecules in the LTE approximation depending on the assumed temperature, and up to two orders of magnitude higher based on a non-LTE analysis. Conclusions: Our modeling suggests that the level of CO depletion must be extremely high (>10, and even >100 if the temperature of the core is around 10 K) at the core center, in contradiction with CO depletion levels directly measured in other cores. Observation of the H2D+ spatial distribution and direct measurement of the CO depletion in H-MM1 will be essential to confirm if present chemical models investigating the basis of deuterium [...].
We present new far-infrared (FIR) images of the edge-on starburst galaxy NGC253 obtained with the Far-Infrared Surveyor (FIS) onboard AKARI at wavelengths of 90 um and 140 um. We have clearly detected FIR dust emission extended in the halo of the galaxy; there are two filamentary emission structures extending from the galactic disk up to 9 kpc in the northern and 6 kpc in the northwestern direction. From its spatial coincidence with the X-ray plasma outflow, the extended FIR emission is very likely to represent outflowing dust entrained by superwinds. The ratios of surface brightness at 90 um to that at 140 um suggest that the temperatures of the dust in the halo are getting higher in the regions far from the disk, implying that there exist extra dust heating sources in the halo of the galaxy.