Do you want to publish a course? Click here

Alternative method for the quantitative determination of Rashba- and Dresselhaus spin-orbit interaction using the magnetization

104   0   0.0 ( 0 )
 Added by Marc Wilde
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum oscillatory magnetization M of a two-dimensional electron system in a magnetic field B is found to provide quantitative information on both the Rashba- and Dresselhaus spin-orbit interaction (SOI). This is shown by first numerically solving the model Hamiltonian including the linear Rashba- and Dresselhaus SOI and the Zeeman term in an in particular doubly tilted magnetic field and second evaluating the intrinsically anisotropic magnetization for different directions of the in-plane magnetic field component. The amplitude of specific magnetic quantum oscillations in M(B) is found to be a direct measure of the SOI strength at fields B where SOI-induced Landau level anticrossings occur. The anisotropic M allows one to quantify the magnitude of both contributions as well as their relative sign. We use realistic sample parameters and show that recently reported experimental techniques provide a sensitivity which allows for the detection of the predicted phenomena.



rate research

Read More

Tunneling experiment is a key technique for detecting Majorana fermion in solid state systems. We use Keldysh non-equilibrium Green function method to study multi-lead tunneling in superconducting nanowire with Rashba and Dresselhaus spin-orbit couplings. A zero-bias textit{dc} conductance peak appears in our setup which signifies the existence of Majorana fermion and is in accordance with previous experimental results on InSb nanowire. Interestingly, due to the exotic property of Majorana fermion, there exists a hole transmission channel which makes the currents asymmetric at the left and right leads. The textit{ac} current response mediated by Majorana fermion is also studied here. To discuss the impacts of Coulomb interaction and disorder on the transport property of Majorana nanowire, we use the renormalization group method to study the phase diagram of the wire. It is found that there is a topological phase transition under the interplay of superconductivity and disorder. We find that the Majorana transport is preserved in the superconducting-dominated topological phase and destroyed in the disorder-dominated non-topological insulator phase.
The concept of gauge fields plays a significant role in many areas of physics from particle physics and cosmology to condensed matter systems, where gauge potentials are a natural consequence of electromagnetic fields acting on charged particles and are of central importance in topological states of matter. Here, we report on the experimental realization of a synthetic non-Abelian gauge field for photons in a honeycomb microcavity lattice. We show that the effective magnetic field associated with TE-TM splitting has the symmetry of Dresselhaus spin-orbit interaction around Dirac points in the dispersion, and can be regarded as an SU(2) gauge field. The symmetry of the field is revealed in the optical spin Hall effect (OSHE), where under resonant excitation of the Dirac points precession of the photon pseudospin around the field direction leads to the formation of two spin domains. Furthermore, we observe that the Dresselhaus field changes its sign in the same Dirac valley on switching from s to p bands in good agreement with the tight binding modelling. Our work demonstrating a non-Abelian gauge field for light on the microscale paves the way towards manipulation of photons via spin on a chip.
141 - Bin Liu , Yunyun Li , Jun Zhou 2016
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Greens function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.
The interplay between Rashba, Dresselhaus and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum rule approach. This solution allows to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.
149 - Junji Fujimoto , Gen Tatara 2018
We show theoretically that conversion between spin and charge by spin-orbit interaction in metals occurs even in a non-local setup where magnetization and spin-orbit interaction are spatially separated if electron diffusion is taken into account. Calculation is carried out for the Rashba spin-orbit interaction treating the coupling with a ferromagnet perturbatively. The results indicate the validity of the concept of effective spin gauge field (spin motive force) in the non-local configuration. The inverse Rashba-Edelstein effect observed for a trilayer of a ferromagnet, a normal metal and a heavy metal can be explained in terms of the non-local effective spin gauge field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا