No Arabic abstract
CAPTCHAs are employed as a security measure to differentiate human users from bots. A new sound-based CAPTCHA is proposed in this paper, which exploits the gaps between human voice and synthetic voice rather than relays on the auditory perception of human. The user is required to read out a given sentence, which is selected randomly from a specified book. The generated audio file will be analyzed automatically to judge whether the user is a human or not. In this paper, the design of the new CAPTCHA, the analysis of the audio files, and the choice of the audio frame window function are described in detail. And also, some experiments are conducted to fix the critical threshold and the coefficients of three indicators to ensure the security. The proposed audio CAPTCHA is proved accessible to users. The user study has shown that the human success rate reaches approximately 97% and the pass rate of attack software using Microsoft SDK 5.1 is only 4%. The experiments also indicated that it could be solved by most human users in less than 14 seconds and the average time is only 7.8 seconds.
We compare complex networks built from the game of go and obtained from databases of human-played games with those obtained from computer-played games. Our investigations show that statistical features of the human-based networks and the computer-based networks differ, and that these differences can be statistically significant on a relatively small number of games using specific estimators. We show that the deterministic or stochastic nature of the computer algorithm playing the game can also be distinguished from these quantities. This can be seen as tool to implement a Turing-like test for go simulators.
To this date, CAPTCHAs have served as the first line of defense preventing unauthorized access by (malicious) bots to web-based services, while at the same time maintaining a trouble-free experience for human visitors. However, recent work in the literature has provided evidence of sophisticated bots that make use of advancements in machine learning (ML) to easily bypass existing CAPTCHA-based defenses. In this work, we take the first step to address this problem. We introduce CAPTURE, a novel CAPTCHA scheme based on adversarial examples. While typically adversarial examples are used to lead an ML model astray, with CAPTURE, we attempt to make a good use of such mechanisms. Our empirical evaluations show that CAPTURE can produce CAPTCHAs that are easy to solve by humans while at the same time, effectively thwarting ML-based bot solvers.
Text-based password schemes have inherent security and usability problems, leading to the development of graphical password schemes. However, most of these alternate schemes are vulnerable to spyware attacks. We propose a new scheme, using CAPTCHA (Completely Automated Public Turing tests to tell Computers and Humans Apart) that retaining the advantages of graphical password schemes, while simultaneously raising the cost of adversaries by orders of magnitude. Furthermore, some primary experiments are conducted and the results indicate that the usability should be improved in the future work.
Can computers overcome human capabilities? This is a paradoxical and controversial question, particularly because there are many hidden assumptions. This article focuses on that issue putting on evidence some misconception related with future generations of machines and the understanding of the brain. It will be discussed to what extent computers might reach human capabilities, and how it could be possible only if the computer is a conscious machine. However, it will be shown that if the computer is conscious, an interference process due to consciousness would affect the information processing of the system. Therefore, it might be possible to make conscious machines to overcome human capabilities, which will have limitations as well as humans. In other words, trying to overcome human capabilities with computers implies the paradoxical conclusion that a computer will never overcome human capabilities at all, or if the computer does, it should not be considered as a computer anymore.
This paper is an investigation into aspects of an audio classification pipeline that will be appropriate for the monitoring of bird species on edges devices. These aspects include transfer learning, data augmentation and model optimization. The hope is that the resulting models will be good candidates to deploy on edge devices to monitor bird populations. Two classification approaches will be taken into consideration, one which explores the effectiveness of a traditional Deep Neural Network(DNN) and another that makes use of Convolutional layers.This study aims to contribute empirical evidence of the merits and demerits of each approach.