Below we analyze the `critic statements made in the Preprint arXiv:1301.1828v1 [nucl-th]. The doubtful scientific argumentation of the authors of the Preprint arXiv:1301.1828v1 [nucl-th] is also discussed.
Electromagnetic properties of the deformed neutron-odd nucleus $^{229}$Th are investigated in the framework of the unified model, with primary emphasis upon the properties of the low-lying isomeric state.
The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei ${}^{226}$Th and ${}^{256,258,260}$Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.
Novelty is an inherent part of innovations and discoveries. Such processes may be considered as an appearance of new ideas or as an emergence of atypical connections between the existing ones. The importance of such connections hints for investigation of innovations through network or graph representation in the space of ideas. In such representation, a graph node corresponds to the relevant concept (idea), whereas an edge between two nodes means that the corresponding concepts have been used in a common context. In this study we address the question about a possibility to identify the edges between existing concepts where the innovations may emerge. To this end, we use a well-documented scientific knowledge landscape of 1.2M arXiv.org manuscripts dated starting from April 2007 and until September 2019. We extract relevant concepts for them using the ScienceWISE.info platform. Combining approaches developed in complex networks science and graph embedding, we discuss the predictability of edges (links) on the scientific knowledge landscape where the innovations may appear.
Preprint is a version of a scientific paper that is publicly distributed preceding formal peer review. Since the launch of arXiv in 1991, preprints have been increasingly distributed over the Internet as opposed to paper copies. It allows open online access to disseminate the original research within a few days, often at a very low operating cost. This work overviews how preprint has been evolving and impacting the research community over the past thirty years alongside the growth of the Web. In this work, we first report that the number of preprints has exponentially increased 63 times in 30 years, although it only accounts for 4% of research articles. Second, we quantify the benefits that preprints bring to authors: preprints reach an audience 14 months earlier on average and associate with five times more citations compared with a non-preprint counterpart. Last, to address the quality concern of preprints, we discover that 41% of preprints are ultimately published at a peer-reviewed destination, and the published venues are as influential as papers without a preprint version. Additionally, we discuss the unprecedented role of preprints in communicating the latest research data during recent public health emergencies. In conclusion, we provide quantitative evidence to unveil the positive impact of preprints on individual researchers and the community. Preprints make scholarly communication more efficient by disseminating scientific discoveries more rapidly and widely with the aid of Web technologies. The measurements we present in this study can help researchers and policymakers make informed decisions about how to effectively use and responsibly embrace a preprint culture.