Magnetic Systems Triggering the M6.6-class Solar Flare in NOAA Active Region 11158


Abstract in English

We report a detailed event analysis on the M6.6-class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activities including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region was consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to a continuous accumulation of the small-scale magnetic patches. A few hours before the flare occurrence, the series of emerged/advected patches reconnected with a preexisting fields. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that, in a triggering process of a flare activity, all magnetic systems of multiple scales, not only the entire AR evolution but also the fine magnetic elements, are altogether involved.

Download