Major astrophysical questions related to the formation and evolution of structures, and more specifically of galaxy groups and clusters, will still be open in the coming decade and beyond: what is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in the most massive objects in the Universe - galaxy groups and clusters? What are the processes driving the evolution of chemical enrichment of the hot diffuse gas in large-scale structures? How and when did the first galaxy groups in the Universe, massive enough to bind more than 10^7 K gas, form? Focussing on the period when groups and clusters assembled (0.5<z<2.5), we show that, due to the continuum and line emission of this hot intergalactic gas at X-ray wavelengths, Athena+, combining high sensitivity with excellent spectral and spatial resolution, will deliver breakthrough observations in view of the aforementioned issues. Indeed, the physical and chemical properties of the hot intra-cluster gas, and their evolution across time, are a key to understand the co-evolution of galaxy and supermassive black hole within their environments.