Do you want to publish a course? Click here

Kepler Microlens Planets and Parallaxes

229   0   0.0 ( 0 )
 Added by Andrew Gould
 Publication date 2013
  fields Physics
and research's language is English
 Authors Andrew Gould




Ask ChatGPT about the research

Keplers quest for other Earths need not end just yet: it remains capable of characterizing cool Earth-mass planets by microlensing, even given its degraded pointing control. If Kepler were pointed at the Galactic bulge, it could conduct a search for microlensing planets that would be virtually non-overlapping with ground-based surveys. More important, by combining Kepler observations with current ground-based surveys, one could measure the microlens parallax pi_E for a large fraction of the known microlensing events. Such parallax measurements would yield mass and distance determinations for the great majority of microlensing planets, enabling much more precise study of the planet distributions as functions of planet and host mass, planet-host separation, and Galactic position (particularly bulge vs. disk). In addition, rare systems (such as planets orbiting brown dwarfs or black holes) that are presently lost in the noise would be clearly identified. In contrast to Keplers current primary hunting ground of close-in planets, its microlensing planets would be in the cool outer parts of solar systems, generally beyond the snow line. The same survey would yield a spectacular catalog of brown-dwarf binaries, probe the stellar mass function in a unique way, and still have plenty of time available for asteroseismology targets.



rate research

Read More

Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses (transits) of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Suns mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.
253 - Wei Zhu 2014
We use Kepler short cadence light curves to constrain the oblateness of planet candidates in the Kepler sample. The transits of rapidly rotating planets that are deformed in shape will lead to distortions in the ingress and egress of their light curves. We report the first tentative detection of an oblate planet outside of the solar system, measuring an oblateness of $0.22 pm 0.11$ for the 18 $M_J$ mass brown dwarf Kepler 39b (KOI-423.01). We also provide constraints on the oblateness of the planets (candidates) HAT-P-7b, KOI-686.01, and KOI-197.01 to be < 0.067, < 0.251, and < 0.186, respectively. Using the Q-values from Jupiter and Saturn, we expect tidal synchronization for the spins of HAT-P-7b, KOI-686.01 and KOI-197.01, and for their rotational oblateness signatures to be undetectable in the current data. The potentially large oblateness of KOI-423.01 (Kepler 39b) suggests that the Q-value of the brown dwarf needs to be two orders of magnitude larger than that of the solar system gas giants to avoid being tidally spun-down.
We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables-the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release-and thus are virtually model independent, extinction being the only free parameter. We also determine each stars mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are ~8% and ~30%, respectively, and the resulting uncertainties on the planet radii and masses are ~9% and ~22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of ~5% and ~6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with median achieved accuracy of ~2%. Using our empirical stellar masses we verify that the majority of putative retired A stars in the sample are indeed more massive than ~1.2 Msun. Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars-with median accuracies of 1.7% and 1.8%, respectively-serve as a fundamental dataset to permit the re-determination of transiting planet radii and masses with the Gaia second data release to ~3% and ~5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.
Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earths radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.
203 - Jason H. Steffen 2012
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا