Do you want to publish a course? Click here

KIC 11285625: a double-lined spectroscopic binary with a gamma Dor pulsator discovered from Kepler space photometry

123   0   0.0 ( 0 )
 Added by Jonas Debosscher Mr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first binary modelling results for the pulsating eclipsing binary KIC 11285625, discovered by the Kepler mission. An automated method to disentangle the pulsation spectrum and the orbital variability in high quality light curves, was developed and applied. The goal was to obtain accurate orbital and component properties, in combination with essential information derived from spectroscopy. A binary model for KIC 11285625 was obtained, using a combined analysis of high-quality space-based Kepler light curves and ground-based high-resolution HERMES echelle spectra. The binary model was used to separate the pulsation characteristics from the orbital variability in the Kepler light curve in an iterative way. We used an automated procedure to perform this task, based on the JKTEBOP binary modelling code, and adapted codes for frequency analysis and prewhitening of periodic signals. Using a disentangling technique applied to the composite HERMES spectra, we obtained a higher signal-to-noise mean component spectrum for both the primary and the secondary. A model grid search method for fitting synthetic spectra was used for fundamental parameter determination for both components. Accurate orbital and component properties of KIC 11285625 were derived, and we have obtained the pulsation spectrum of the gamma Dor pulsator in the system. Detailed analysis of the pulsation spectrum revealed amplitude modulation on a time scale of a hundred days, and strong indications of frequency splittings at both the orbital frequency, and the rotational frequency derived from spectroscopy.



rate research

Read More

We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system. Kepler satellite data were combined with spectroscopic data obtained with the 4.2 m William Herschel Telescope (WHT). This allowed us to determine precise orbital and physical parameters of this relatively long period (P=10.3 d) and slightly eccentric, ($e=0.3$) binary system. The physical parameters have been determined as $M_1 = 1.194pm0.008$ M$_{odot}$, $M_2 = 1.078pm0.007$ M$_{odot}$, $R_1 = 1.682pm0.004$ R$_{odot}$, $R_2 = 1.226pm0.005$ R$_{odot}$, $L_1 = 2.8pm0.4$ L$_{odot}$, $L_2 = 1.8pm0.2$ L$_{odot}$ and orbital seperation $a = 26.20pm0.04$ R$_{odot}$ through simultaneous solutions of Kepler light curves and of the WHT radial velocity data. Binarity effects were extracted from the light curve in order to study intrinsic variations in the residuals. Five significant and more than 100~combination frequencies were detected. We modeled the binary system assuming non-conservative evolution models with the Cambridge STARS (TWIN) code and we show evolutionary tracks of the components in the $log L - log T$ plane, the $log R - log M$ plane and the $log P - rm age$ plane for both spin and orbital periods together with eccentricity $e$ and $log R_1$. The model of the non-conservative processes in the code led the system to evolve to the observed system parameters in roughly $5.1 $ Gyr.
Context: Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low-radial-order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most delta Scuti stars also show long-period light variations represents a real challenge for theory. Methods: Fourier analysis of all the available Kepler light curves. Investigation of the frequency and period spacings. Determination of the stellar physical parameters from spectroscopic observations. Modelling of the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 c/d. The light variations are dominated by the beating of two dominant frequencies located at around 4 c/d. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v~70 km/s, i > 70 deg) or a fast rotator (v~200 km/s) with i~20 deg. The transit analysis disclosed that the transit events which occur with a ~197 c/d period may be caused by a 1.6 R_Jup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
Pulsating stars in eclipsing binary systems are powerful tools to test stellar models. Binarity enables to constrain the pulsating component physical parameters, whose knowledge drastically improves the input physics for asteroseismic studies. The study of stellar oscillations allows us, in its turn, to improve our understanding of stellar interiors and evolution. The space mission CoRoT discovered several promising objects suitable for these studies, which have been photometrically observed with unprecedented accuracy, but needed spectroscopic follow-up. A promising target was the relatively bright eclipsing system CoRoT 102918586, which turned out to be a double-lined spectroscopic binary and showed, as well, clear evidence of Gamma Dor type pulsations. We obtained phase resolved high-resolution spectroscopy with the Sandiford spectrograph at the McDonald 2.1m telescope and the FEROS spectrograph at the ESO 2.2m telescope. Spectroscopy yielded both the radial velocity curves and, after spectra disentangling, the component effective temperatures, metallicity and line-of-sight projected rotational velocities. The CoRoT light curve was analyzed with an iterative procedure, devised to disentangle eclipses from pulsations. We obtained an accurate determination of the system parameters, and by comparison with evolutionary models strict constraints on the system age. Finally, the residuals obtained after subtraction of the best fitting eclipsing binary model were analyzed to determine the pulsator properties. We achieved a quite complete and consistent description of the system. The primary star pulsates with typical {gamma} Dor frequencies and shows a splitting in period which is consistent with high order g-mode pulsations in a star of the corresponding physical parameters. The value of the splitting, in particular, is consistent with pulsations in l = 1 modes.
The space-missions MOST, CoRoT, and Kepler deliver a huge amount of high-quality photometric data suitable to study numerous pulsating stars. Our ultimate goal is a detection and analysis of an extended sample of Gamma Dor-type pulsating stars with the aim to search for observational evidence of non-uniform period spacings and rotational splittings of gravity modes in main-sequence stars typically twice as massive as the Sun. We applied an automated supervised photometric classification method to select a sample of 69 Gamma Doradus candidate stars. We used an advanced method to extract the Kepler light curves from the pixel data information using custom masks. For 36 of the stars, we obtained high-resolution spectroscopy with the HERMES spectrograph installed at the Mercator telescope. We find that all stars for which spectroscopic estimates of Teff and logg are available fall into the region of the HR diagram where the Gamma Dor and Delta Sct instability strips overlap. The stars cluster in a 700 K window in effective temperature, logg measurements suggest luminosity class IV-V. From the Kepler photometry, we identify 45 Gamma Dor-type pulsators, 14 Gamma Dor/Delta Sct hybrids, and 10 stars which are classified as possibly Gamma Dor/Delta Sct hybrid pulsators. The results of photometric and spectroscopic classifications according to the type of variability are in perfect agreement. We find a clear correlation between the spectroscopically derived vsini and the frequencies of independent pulsation modes and show that it has nothing to do with rotational modulation of the stars but is related to their stellar pulsations. Our sample and frequency determinations offer a good starting point for seismic modelling of slow to moderately rotating Gamma Dor stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا