Do you want to publish a course? Click here

Dichotomy Results for the L1 Norm of the Discrepancy Function

292   0   0.0 ( 0 )
 Added by Michael T. Lacey
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

It is a well-known conjecture in the theory of irregularities of distribution that the L1 norm of the discrepancy function of an N-point set satisfies the same asymptotic lower bounds as its L^2 norm. In dimension d=2 this fact has been established by Halasz, while in higher dimensions the problem is wide open. In this note, we establish a series of dichotomy-type results which state that if the L^1 norm of the discrepancy function is too small (smaller than the conjectural bound), then the discrepancy function has to be large in some other function space.



rate research

Read More

A great challenge in the analysis of the discrepancy function D_N is to obtain universal lower bounds on the L-infty norm of D_N in dimensions d geq 3. It follows from the average case bound of Klaus Roth that the L-infty norm of D_N is at least (log N) ^{(d-1)/2}. It is conjectured that the L-infty bound is significantly larger, but the only definitive result is that of Wolfgang Schmidt in dimension d=2. Partial improvements of the Roth exponent (d-1)/2 in higher dimensions have been established by the authors and Armen Vagharshakyan. We survey these results, the underlying methods, and some of their connections to other subjects in probability, approximation theory, and analysis.
Let A_N be an N-point distribution in the unit square in the Euclidean plane. We consider the Discrepancy function D_N(x) in two dimensions with respect to rectangles with lower left corner anchored at the origin and upper right corner at the point x. This is the difference between the actual number of points of A_N in such a rectangle and the expected number of points - N x_1x_2 - in the rectangle. We prove sharp estimates for the BMO norm and the exponential squared Orlicz norm of D_N(x). For example we show that necessarily ||D_N||_(expL^2) >c(logN)^(1/2) for some aboslute constant c>0. On the other hand we use a digit scrambled version of the van der Corput set to show that this bound is tight in the case N=2^n, for some positive integer n. These results unify the corresponding classical results of Roth and Schmidt in a sharp fashion.
We prove that in all dimensions n at least 3, for every integer N there exists a distribution of points of cardinality $ N$, for which the associated discrepancy function D_N satisfies the estimate an estimate, of sharp growth rate in N, in the exponential Orlicz class exp)L^{2/(n+1)}. This has recently been proved by M.~Skriganov, using random digit shifts of binary digital nets, building upon the remarkable examples of W.L.~Chen and M.~Skriganov. Our approach, developed independently, complements that of Skriganov.
We introduce and study the l1 norm of coherence of assistance both theoretically and operationally. We first provide an upper bound for the l1 norm of coherence of assistance and show a necessary and sufficient condition for the saturation of the upper bound. For two and three dimensional quantum states, the analytical expression of the l1 norm of coherence of assistance is given. Operationally, the mixed quantum coherence can always be increased with the help of another party s local measurement and one way classical communication since the l1 norm of coherence of assistance, as well as the relative entropy of coherence of assistance, is shown to be strictly larger than the original coherence. The relation between the l1 norm of coherence of assistance and entanglement is revealed. Finally, a comparison between the l1 norm of coherence of assistance and the relative entropy of coherence of assistance is made.
Let $L$ be a finite extension of $mathbb{F}_q(t)$. We calculate the proportion of polynomials of degree $d$ in $mathbb{F}_q[t]$ that are everywhere locally norms from $L/mathbb{F}_q(t)$ which fail to be global norms from $L/mathbb{F}_q(t)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا