Predicting Human Behavior in Unrepeated, Simultaneous-Move Games


Abstract in English

It is common to assume that agents will adopt Nash equilibrium strategies; however, experimental studies have demonstrated that Nash equilibrium is often a poor description of human players behavior in unrepeated normal-form games. In this paper, we analyze five widely studied models (Quantal Response Equilibrium, Level-k, Cognitive Hierarchy, QLk, and Noisy Introspection) that aim to describe actual, rather than idealized, human behavior in such games. We performed what we believe is the most comprehensive meta-analysis of these models, leveraging ten different data sets from the literature recording human play of two-player games. We began by evaluating the models generalization or predictive performance, asking how well a model fits unseen test data after having had its parameters calibrated based on separate training data. Surprisingly, we found that what we dub the QLk model of Stahl & Wilson (1994) consistently achieved the best performance. Motivated by this finding, we describe methods for analyzing the posterior distributions over a models parameters. We found that QLks parameters were being set to values that were not consistent with their intended economic interpretations. We thus explored variations of QLk, ultimately identifying a new model family that has fewer parameters, gives rise to more parsimonious parameter values, and achieves better predictive performance.

Download