Do you want to publish a course? Click here

On a local mass dimension one Fermi field of spin one-half and the theoretical crevice that allows it

189   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since the 1928 seminal work of Dirac, and its subsequent development by Weinberg, a view is held that there is a unique Fermi field of spin one-half. It is endowed with mass dimension three-half. Combined, these characteristics profoundly affect the phenomenology of the high energy physics, astrophysics, and cosmology. We here present a counter example by providing a local, mass dimension one, Fermi field of spin one-half. The theory, inter alia, thus allows dimensionless quartic self interaction for the new fermions, and its only other dimensionless coupling is quadratic in the new fermions and in the standard-model scalar field. For these reasons, the immediate application of the new theory resides in the dark-matter sector of physical reality. The lowest-mass associated new particle may leave its unique signature at the Large Hadron Collider. We discuss in detail the theoretical crevice that allows the existence of the new quantum field.



rate research

Read More

We study the conditions under which a non-standard Wigner class concerning discrete symmetries may arise for massive spin one-half states. The mass dimension one fermionic states are shown textcolor{red}{to} constitute explicit examples. We also show how to conciliate these states with the current criticism due to the Lee and Wick, and Weinberg formulation.
It is well known that the usual formulation of Elko spinor fields leads to a subtle Lorentz symmetry break encoded in the spin sums. Recently it was proposed a redefinition in the dual structure, along with a given mathematical device, which eliminate the Lorentz breaking term in the spin sums. In this work we delve into the analysis of this mathematical device providing a solid framework to the used method.
We point out that the successful generation of the electroweak scale via gravitational instanton configurations in certain scalar-tensor theories can be viewed as the aftermath of a simple requirement: the existence of a quadratic pole with a sufficiently small residue in the Einstein-frame kinetic term for the Higgs field. In some cases, the inflationary dynamics may also be controlled by this residue and therefore related to the Fermi-to-Planck mass ratio, up to possible uncertainties associated with the instanton regularization. We present here a unified framework for this hierarchy generation mechanism, showing that the aforementioned residue can be associated with the curvature of the Einstein-frame target manifold in models displaying spontaneous breaking of dilatations. Our findings are illustrated through examples previously considered in the literature.
In this work we use momentum-space techniques to evaluate the propagator $G(x,x^{prime})$ for a spin $1/2$ mass dimension one spinor field on a curved Friedmann-Robertson-Walker spacetime. As a consequence, we built the one-loop correction to the effective lagrangian in the coincidence limit. Going further we compute the effective lagrangian in the finite temperature regime. We arrive at interesting cosmological consequences, as time-dependent cosmological `constant, fully explaining the functional form of previous cosmological models.
This paper study the evolution of the universe filled with a neutral mass dimension one fermionic field, sometimes called Elko. The numerical analysis of the coupled system of equations furnish a scale factor growth and energy density evolution that correctly reproduces the inflationary phase of the universe. After that, supposing a mechanism of energy transference to ordinary matter, the initial conditions generated after inflation drives the radiation dominated phase and also the subsequent dark matter evolution, since the Elko field is a good dark matter candidate. The energy density of the field at the end of inflation, at the end of radiation phase and for present time are in agreement to the standard model estimates. The analysis was performed with a potential containing a quadratic mass term plus a quartic self-interaction term, which follows naturally from the theory of mass dimension one fermions. It is interesting to notice that inflation occurs when the field makes a kind of transition around the Planck mass scale. The number of e-foldings during inflation was found to be strongly dependent on the initial conditions of the Elko field, as occurs in chaotic inflationary models. An upper mass limit for Elko field has been obtained as $m<10^9$GeV. A possible interpretation of both inflationary phase and recent cosmic acceleration as a consequence of a kind of Pauli exclusion principle is presented at the end.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا