No Arabic abstract
The question of the correlation between magnetization, band splittings, and magnetic circular dichroism (MCD) in the fundamental gap region of dilute magnetic semiconductors is examined experimentally and theoretically taking the case of wurtzite Ga(1-x)FexN as an example. Magnetization and polarization-resolved reflectivity measurements have been performed down to 2K and up to 7T for x = 0.2%. Optical transitions originating from all three free excitons A, B and C, specific to the wurtzite structure, have been observed and their evolution with the magnetic field determined. It is demonstrated that the magnitude of the exciton splittings evaluated from reflectivity-MCD data can be overestimated by more than a factor of 2, as compared to the values obtained by describing the polarization-resolved reflectivity spectra with appropriate dielectric functions. A series of model calculations shows that the quantitative inaccuracy of MCD originates from a substantial influence of the magnetization-dependent exchange interactions not only on the spin splittings of excitons but also upon their linewidth and oscillator strength. At the same time, a method is proposed that allows to evaluate the field and temperature dependencies of the magnetization from MCD spectra. The accurate values of the excitonic splittings and of the magnetization reported here substantiate the magnitudes of the apparent $sp-d$ exchange integrals in (Ga,Fe)N previously determined.
We report on the metalorganic chemical vapor deposition (MOCVD) of GaN:Fe and (Ga,Fe)N layers on c-sapphire substrates and their thorough characterization via high-resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), spatially-resolved energy dispersive X-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), photoluminescence (PL), Hall-effect, electron-paramagnetic resonance (EPR), and magnetometry employing a superconducting quantum interference device (SQUID). A combination of TEM and EDS reveals the presence of coherent nanocrystals presumably FexN with the composition and lattice parameter imposed by the host. From both TEM and SIMS studies, it is stated that the density of nanocrystals and, thus the Fe concentration increases towards the surface. In layers with iron content x<0.4% the presence of ferromagnetic signatures, such as magnetization hysteresis and spontaneous magnetization, have been detected. We link the presence of ferromagnetic signatures to the formation of Fe-rich nanocrystals, as evidenced by TEM and EDS studies. This interpretation is supported by magnetization measurements after cooling in- and without an external magnetic field, pointing to superparamagnetic properties of the system. It is argued that the high temperature ferromagnetic response due to spinodal decomposition into regions with small and large concentration of the magnetic component is a generic property of diluted magnetic semiconductors and diluted magnetic oxides showing high apparent Curie temperature.
Fe-doped III-V ferromagnetic semiconductors (FMSs) such as (In,Fe)As, (Ga,Fe)Sb, (In,Fe)Sb, and (Al,Fe)Sb are promising materials for spintronic device applications because of the availability of both n- and p-type materials and the high Curie temperatures. On the other hand, (Ga,Fe)As, which has the same zinc-blende crystal structure as the Fe-doped III-V FMSs, shows paramagnetism. The origin of the different magnetic properties in the Fe-doped III-V semiconductors remains to be elucidated. To address this issue, we use resonant photoemission spectroscopy (RPES) and x-ray magnetic circular dichroism (XMCD) to investigate the electronic and magnetic properties of the Fe ions in a paramagnetic (Ga$_{0.95}$,Fe$_{0.05}$)As thin film. The observed Fe 2$p$-3$d$ RPES spectra show that the Fe 3$d$ states are similar to those of ferromagnetic (Ga,Fe)Sb. The estimated Fermi level is located in the middle of the band gap in (Ga,Fe)As. The Fe $L_{2,3}$ XMCD spectra of (Ga$_{0.95}$,Fe$_{0.05}$)As show pre-edge structures, which are not observed in the Fe-doped FMSs, indicating that the minority-spin ($downarrow$) $e_downarrow$ states are vacant in (Ga$_{0.95}$,Fe$_{0.05}$)As. The XMCD results suggest that the carrier-induced ferromagnetic interaction in (Ga$_{0.95}$,Fe$_{0.05}$)As is short-ranged and weaker than that in the Fe-doped FMSs. The experimental findings suggest that the electron occupancy of the $e_downarrow$ states contributes to the appearance of ferromagnetism in the Fe-doped III-V semiconductors, for p-type as well as n-type compounds.
A systematic investigation about the structure and magnetism of Fe75-xCr25Gax (11<x<33) and Fe50Cr50-yGay (0<y<33) series has been carried out in this work. It shows that the parent Fe50Cr25Ga25 phase has higher tolerance for Ga replacing Cr than replacing Fe atoms. An abrupt flip of Curie temperature and magnetization in the Fe50Cr50-yGay (0<y<33) series was observed at the composition of Fe50Cr25Ga25. We proposed an explanation concerning anti-sites occupation and magnetic structure transition in this series. The induced structure is proved energetically favorable from first-principles calculations. This work can help us to understand the dependences between the crystal structure and magnetism in Fe-based Heusler compounds, and provides a method to deduce the atomic configurations based on the evolution of magnetism.
The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mn$_{int}$) ions exists and that the amount of the Mn$_{int}$ affects $T_C$.
The difference in the transmission for left and right circularly polarised light though thin films on substrates in a magnetic field is used to obtain the magnetic circular dichroism of the film. However there are reflections at all the interfaces and these are also different for the two polarisations and generate the polar Kerr signal. In this paper the contribution to the differences to the total transmission from the transmission across interfaces as well as the differences in absorption in the film and the substrate are calculated. This gives a guide to when it is necessary to evaluate these corrections in order to obtain the real MCD from a measure of the differential transmission due to differential absorption in the film.