Do you want to publish a course? Click here

Nova KT Eri 2009: Infrared studies of a very fast and small amplitude He/N nova

213   0   0.0 ( 0 )
 Added by Ashish Raj
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present near-infrared spectroscopic and photometric observations of the nova KT Eridani taken during the first 100 days following its discovery in 2009 November. The JHK spectra of the object have been taken from the Mount Abu Infrared Observatory using the Near-Infrared Imager/Spectrometer. The spectra, typical of the He/N class novae, show strong He I emission lines together with H I and O I emission features. The H I, Pa-beta and Br-gamma spectral lines and the He I line at 2.0581 micron show broad wings with a relatively narrow central component. The broad wings extend to 1900 km/s while the central component has FWHM of 2100 km/s. The V and near-infrared JHK light curves show an additional small amplitude outburst near 40 days after optical maximum. The distance to the nova d = 6.3 +/- 0.1 kpc is derived using the MMRD relation and the estimated value of t2 = 5.7 +/- 0.3 days. The small value of t2 places KT Eri in the class of very fast novae. Using the value of the distance to the nova d, we estimate the height of the nova to be z = 3.3 +/- 0.1 kpc below the galactic plane. We have also calculated the upper limit for the ejecta mass for KT Eri to be in the range 2.4-7.4 x 10^(-5) Msun. Kinematic evidence is presented from the shape of the line profiles for a possible bipolar flow. We analyze the temporal evolution of the continuum and also discuss the possibility of KT Eri being a recurrent nova.



rate research

Read More

Modelling the morphology of a nova outburst provides valuable information on the shaping mechanism in operation at early stages following the outburst. We performed morpho-kinematical studies, using {sc shape}, of the evolution of the Halpha line profile following the outburst of the nova KT Eridani. We applied a series of geometries in order to determine the morphology of the system. The best fit morphology was that of a dumbbell structure with a ratio between the major to minor axis of 4:1, with an inclination angle of 58$^{+6}_{-7}$ degrees and a maximum expansion velocity of 2800$pm$200 km/s. Although, we found that it is possible to define the overall structure of the system, the radial density profile of the ejecta is much more difficult to disentangle. Furthermore, morphology implied here may also be consistent with the presence of an evolved secondary as suggested by various authors.
V2672 Oph reached maximum brightness V=11.35 on 2009 August 16.5. With observed t2(V)=2.3 and t3(V)=4.2 days decline times, it is one of the fastest known novae, being rivalled only by V1500 Cyg (1975) and V838 Her (1991) among classical novae, and U Sco among the recurrent ones. The line of sight to the nova passes within a few degrees of the Galactic centre. The reddening of V2672 Oph is E(B-V)=1.6 +/-0.1, and its distance ~19 kpc places it on the other side of the Galactic centre at a galacto-centric distance larger than the solar one. The lack of an infrared counterpart for the progenitor excludes the donor star from being a cool giant like in RS Oph or T CrB. With close similarity to U Sco, V2672 Oph displayed a photometric plateau phase, a He/N spectrum classification, extreme expansion velocities and triple peaked emission line profiles during advanced decline. The full width at zero intensity of Halpha was 12,000 km/s at maximum, and declined linearly in time with a slope very similar to that observed in U Sco. We infer a WD mass close to the Chandrasekhar limit and a possible final fate as a SNIa. Morpho-kinematical modelling of the evolution of the Halpha profile suggests that the overall structure of the ejecta is that of a prolate system with polar blobs and an equatorial ring. The density in the prolate system appeared to decline faster than that in the other components. V2672 Oph is seen pole-on, with an inclination of 0+/-6 deg and an expansion velocity of the polar blobs of 4800 +900/-800 km/s. On the basis of its remarkable similarity to U Sco, we suspect this nova may be a recurrent. Given the southern declination, the faintness at maximum, the extremely rapid decline and its close proximity to the Ecliptic, it is quite possible that previous outbursts of V2672 Oph have been missed.
104 - R. Hounsell 2011
Fast novae are primarily located within the plane of the Galaxy, slow novae are found within its bulge. Because of high interstellar extinction along the line of sight many novae lying close to the plane are missed and only the brightest seen. One nova lying very close to the Galactic plane is V1721 Aquilae, discovered in outburst on 2008 September 22. Spectra obtained 2.69 days after outburst revealed very high expansion velocities (FWHM ~6450 km/s). In this paper we have used available pre- and post-outburst photometry and post-outburst spectroscopy to conclude that the object is a very fast, luminous, and highly extinguished A_V=11.6+/-0.2) nova system with an average ejection velocity of ~3400 km/s. Pre-outburst near-IR colours from 2MASS indicate that at quiescence the object is similar to many quiescent CNe and appears to have a main sequence/sub-giant secondary rather than a giant. Based on the speed of decline of the nova and its emission line profiles we hypothesise that the axis ratio of the nova ejecta is ~1.4 and that its inclination is such that the central binary accretion disc is face-on to the observer. The accretion discs blue contribution to the systems near-IR quiescent colours may be significant. Simple models of the nova ejecta have been constructed using the morphological modelling code XS5, and the results support the above hypothesis. Spectral classification of this object has been difficult owing to low S/N levels and high extinction, which has eliminated all evidence of any He/N or FeII emission within the spectra. We suggest two possibilities for the nature of V1721 Aql: that it is a U Sco type RN with a sub-giant secondary or, less likely, that it is a highly energetic bright and fast classical nova with a main sequence secondary. Future monitoring of the object for possible RN episodes may be worthwhile, as would archival searches for previous outbursts.
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstellar extinction. Based solely on the nature of NIR spectrum we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 $pm$ 0.5 kpc and $A_{rm v}$ $sim$ 9.02 respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines while the neutral gas mass is estimated from the optical [OI] lines. We discuss the cause for a rapid strengthening of the He I 1.0830 $mu$m line during the early stages. V1831 Aql formed a modest amount of dust fairly early ($sim$ 19.2 days after discovery); the dust shell is not seen to be optically thick. Estimates are made of the dust temperature, dust mass and grain size. Dust formation commences around day 19.2 at a condensation temperature of 1461 $pm$ 15 K, suggestive of a carbon composition, following which the temperature is seen to gradually decrease to 950K. The dust mass shows a rapid initial increase which we interpret as being due to an increase in the number of grains, followed by a period of constancy suggesting the absence of grain destruction processes during this latter time. A discussion is made of the evolution of these parameters, including certain peculiarities seen in the grain radius evolution.
We present multi-epoch near-infrared photo-spectroscopic observations of Nova Cephei 2014 and Nova Scorpii 2015, discovered in outburst on 2014 March 8.79 UT and 2015 February 11.84 UT respectively. Nova Cep 2014 shows the conventional NIR characteristics of a Fe II class nova characterized by strong CI, HI and O I lines, whereas Nova Sco 2015 is shown to belong to the He/N class with strong He I, HI and OI emission lines. The highlight of the results consists in demonstrating that Nova Sco 2015 is a symbiotic system containing a giant secondary. Leaving aside the T CrB class of recurrent novae, all of which have giant donors, Nova Sco 2015 is shown to be only the third classical nova to be found with a giant secondary. The evidence for the symbiotic nature is three-fold; first is the presence of a strong decelerative shock accompanying the passage of the novas ejecta through the giants wind, second is the H$alpha$ excess seen from the system and third is the spectral energy distribution of the secondary in quiescence typical of a cool late type giant. The evolution of the strength and shape of the emission line profiles shows that the ejecta velocity follows a power law decay with time ($t^{-1.13 pm 0.17}$). A Case B recombination analysis of the H I Brackett lines shows that these lines are affected by optical depth effects for both the novae. Using this analysis we make estimates for both the novae of the emission measure $n_e^2L$, the electron density $n_e$ and the mass of the ejecta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا