Do you want to publish a course? Click here

Optical Detection of Single Nanoparticles with a Sub-wavelength Fiber-Taper

243   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light power which shows abrupt jumps with each particle binding to the taper surface. The experimental validation of the sensor is demonstrated with polystyrene nanoparticles of radii 120 nm and 175 nm in the 1550 nm wavelength band.



rate research

Read More

We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber length to shorten the pulsewidth and reduce excessive higher-order nonlinearity and nonlinear chirp in the fiber laser. The measured jitter spectrum is limited by the amplified spontaneous emission limited quantum noise in the 100 kHz - 1 MHz offset frequency range, while it was limited by the relative intensity noise-converted jitter in the lower offset frequency range. This intrinsically low timing jitter enables sub-100-attosecond synchronization between the two mode-locked Yb-fiber lasers over the full Nyquist frequency with a modest 10-kHz locking bandwidth. The demonstrated performance is the lowest timing jitter measured from any free-running mode-locked fiber lasers, comparable to the performance of the lowest-jitter Ti:sapphire solid-state lasers.
We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 times 10^{-18}$ and $6.5 times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.
Optical fibers play a key role in many different fields of science and technology. In particular, fibers with a diameter of several micrometers are intensively used in photonics. For these applications, it is often important to precisely know and control the fiber radius. Here, we demonstrate a novel technique to determine the local radius variation of a 30-micrometer diameter silica fiber with sub-AA ngstrom precision with axial resolution of several tens of micrometers over a fiber length of more than half a millimeter. Our method relies on taking an image of the fibers whispering-gallery modes (WGMs). In these WGMs, the speed of light propagating along the fiber axis is strongly reduced. This enables us to determine the fiber radius with a significantly enhanced precision, far beyond the diffraction limit. By exciting different axial modes, we verify the precision and reproducibility of our method and demonstrate that we can achieve a precision better than 0.3 AA. The method can be generalized to other experimental situations where slow light occurs and, thus, has a large range of potential applications in the realm of precision metrology and optical sensing.
A peculiar radiation arising as a result of radiation interference of nonlinear oscillators excited by a monochromatic plane wave field of the incident particle is described. The radiation properties are determined by the fact that a phase of each oscillator radiation fields is synchronized by a wave field, while the radiation itself occurs due to the particle field influence on the oscillators. The consideration is performed for a thin film with negligible density effect. It is supposed that the contribution is given only by a long-wave part of the Weizsacker spectrum for which nonlinear polarization coefficients of medium are large.
Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry and material sciences. Despite significant advances, localising objects with nanometric position accuracy in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Furthermore, every localisation method reported to date requires signal acquisition from multiple spatial points, with consequent speed limitations. Here, we show a new four-wave mixing interferometry technique, whereby the position of a single non-fluorescing gold nanoparticle is determined with better than 20 nm accuracy in plane and 1 nm axially from rapid single-point acquisition measurements by exploiting optical vortices. The technique is also uniquely sensitive to particle asymmetries of only 0.5% aspect ratio, corresponding to a single atomic layer of gold, as well as particle orientation, and the detection is background-free even inside biological cells. This method opens new ways of of unraveling single-particle trafficking within complex 3D architectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا