No Arabic abstract
The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around eleven luminous, obscured, radio-quiet quasars at z~0.5 out to ~15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III]5007 emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80% of the emission as high as 1000 km/s combined with relatively small velocity difference across them (from 90 to 520 km/s) point toward wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km/s, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly toward outer parts of the nebulae (by 3% per kpc on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find a kinetic energy flow between 4x10^{44} and 3x10^{45} erg/s and mass outflow rate between 2000 and 20000 Msun/yr. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ~2%. We report four new candidates for super-bubbles -- outflows that may have broken out of the denser regions of the host galaxy.
We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z<2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are Active Galactic Nuclei (AGN) with abnormally weak emission features; ten of those 13 are definitively radio-quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGN lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGN appear to have intrinsically weak or absent broad emission line regions, and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z<2.2 radio-quiet BL Lac candidates already identified in the SDSS not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN broad emission line regions.
Exploring the origin of Ly-alpha nebulae (blobs) requires measurements of their gas kinematics that are impossible with only the resonant, optically-thick LyA line. To define gas motions relative to the systemic velocity of the blob, the LyA line must be compared with an optically-thin line like Halpha, which is not much altered by radiative transfer effects. We obtain optical and NIR spectra of the two brightest LyA blobs from Yang et al. sample using the Magellan/MagE and VLT/SINFONI. Both the LyA and Halpha lines confirm that these blobs lie at the survey redshift, z~2.3. Within each blob, we detect several Halpha sources, which roughly correspond to galaxies seen in HST images. The Halpha detections show that these galaxies have large internal velocity dispersions (130 - 190km/s) and that, in the one system (LAB01), their velocity difference is ~440 km/s. The presence of multiple galaxies within the blobs, and those galaxies large velocity dispersions and large relative motion, is consistent with our previous finding that LyA blobs inhabit massive dark matter halos that will evolve into those typical of rich clusters today. To determine whether the gas near the embedded galaxies is predominantly infalling or outflowing, we compare the LyA and Halpha line centers, finding that LyA is not offset (Delta LyA = +0km/s) in LAB01 and redshifted by only +230 km/s in LAB02. These offsets are small compared to those of Lyman break galaxies, which average +450 km/s and extend to about +700 km/s. We test and rule out the simplest infall models and those outflow models with super/hyper-winds, which require large outflow velocities. Because of the unknown geometry of the gas distribution and the possibility of multiple sources of LyA emission embedded in the blobs, a larger sample and more sophisticated models are required to test more complex or a wider range of infall and outflow scenarios.
We present Spitzer IRS spectra and MIPS photometry of 12 radio-loud QSOs with FR II morphologies at z ~ 0.3. Six of the sources are surrounded by luminous extended emission-line regions (EELRs), while the other six do not have such extended nebulae. The two subsamples are indistinguishable in their mid-infrared spectra and overall infrared spectral energy distributions (SEDs). For both subsamples, the mid-infrared aromatic features are undetected in either individual sources or their stacked spectra, and the SEDs are consistent with pure quasar emission without significant star formation. The upper limits to the star formation rate are sufficiently low that starburst-driven superwinds can be ruled out as a mechanism for producing the EELRs, which are instead likely the result of the ejection of most of the gas from the system by blast waves accompanying the launching of the radio jets. The FR II quasars deviate systematically from the correlation between host galaxy star formation rate and black hole accretion rate apparently followed by radio-quiet QSOs, implying little or no bulge growth coeval with the current intensive black hole growth. We also present a new Spitzer estimate of the star formation rate for the starburst in the host galaxy of the compact steep-spectrum radio quasar 3C 48.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral luminosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
This is the second paper of a series exploring the multi-component (stars, warm and cold gas and radio jets) properties of a sample of eleven nearby low excitation radio galaxies (LERGs), with the aim of better understanding the AGN fuelling/feedback cycle in these objects. Here we present a study of the molecular gas kinematics of six sample galaxies detected in $^{12}$CO(2-1) with ALMA. In all cases, our modelling suggests that the bulk of the gas in the observed (sub-)kpc CO discs is in ordered rotation. Nevertheless, low-level distortions are ubiquitous, indicating that the molecular gas is not fully relaxed into the host galaxy potential. The majority of the discs, however, are only marginally resolved, preventing us from drawing strong conclusions. NGC 3557 and NGC 3100 are special cases. The features observed in the CO velocity curve of NGC 3557 allow us to estimate a super-massive black hole (SMBH) mass of $(7.10pm0.02)times10^{8}$ M$_{odot}$, in agreement with expectations from the M$_{rm SMBH}- sigma_{*}$ relation. The rotation pattern of NGC 3100 shows distortions that appear to be consistent with the presence of both a position angle and inclination warp. Non-negligible radial motions are also found in the plane of the CO disc, likely consistent with streaming motions associated with the spiral pattern found in the inner regions of the disc. The dominant radial motions are likely to be inflows, supporting a scenario in which the cold gas is contributing to the fuelling of the AGN.