Majority-vote model on (3,12^2), (4,6,12) and (4,8^2) Archimedean lattices


Abstract in English

On ($3,12^2$), ($4,6,12$) and ($4,8^2$) Archimedean lattices, the critical properties of majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak {it et all.} [Phys. Rev. E, {bf 75}, 061110 (2007)] rather than the traditional majority-vote with noise [Jose Mario de Oliveira, J. Stat. Phys. {bf 66}, 273 (1992)]. The critical temperature and the critical exponents for this transition rate are obtained from extensive Monte Carlo simulations and with a finite size scaling analysis. The calculated values of the critical temperatures Binder cumulant are $T_c=0.363(2)$ and $U_4^*=0.577(4)$; $T_c=0.651(3)$ and $U_4^*=0.612(5)$; and $T_c=0.667(2)$ and $U_4^*=0.613(5)$ for ($3,12^2$), ($4,6,12$) and ($4,8^2$) lattices, respectively. The critical exponents $beta/ u$, $gamma/ u$ and $1/ u$ for this model are $0.237(6)$, $0.73(10)$, and $ 0.83(5)$; $0.105(8)$, $1.28(11)$, and $1.16(5)$; $0.113(2)$, $1.60(4)$, and $0.84(6)$ for ($3,12^2$), ($4,6,12$) and ($4,8^2$) lattices, respectively. These results differ from the usual Ising model results and the majority-vote model on so-far studied regular lattices or complex networks.

Download