We report what we believe is the weakest interaction between solitons ever observed. Our experiment involves temporal optical cavity solitons recirculating in a coherently-driven passive optical fibre ring resonator. We observe two solitons, separated by up to 8,000 times their width, changing their temporal separation by a fraction of an attosecond per round-trip of the 100 m-long resonator, or equivalently 1/10,000 of the wavelength of the soliton carrier wave per characteristic dispersive length. The interactions are so weak that, at the speed of light, they require an effective propagation distance of the order of an astronomical unit to fully develop, i.e. tens of millions of kilometres. The interaction is mediated by transverse acoustic waves generated in the optical fibre by the propagating solitons through electrostriction.