Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry


Abstract in English

Using an optimally coupled nanometer-scale superconducting quantum interference device, we measure the magnetic flux originating from an individual ferromagnetic Ni nanotube attached to a Si cantilever. At the same time, we detect the nanotubes volume magnetization using torque magnetometry. We observe both the predicted reversible and irreversible reversal processes. A detailed comparison with micromagnetic simulations suggests that vortex-like states are formed in different segments of the individual nanotube. Such stray-field free states are interesting for memory applications and non-invasive sensing.

Download