Do you want to publish a course? Click here

Main-Belt Comet P/2012 T1 (PANSTARRS)

243   0   0.0 ( 0 )
 Added by Henry Hsieh
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The objects intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.



rate research

Read More

Main-Belt Comet P/2012 T1 (PANSTARRS) has been imaged using the 10.4m Gran Telescopio Canarias (GTC) and the 4.2m William Herschel Telescope (WHT) at six epochs in the period from November 2012 to February 2013, with the aim of monitoring its dust environment. The dust tails brightness and morphology are best interpreted in terms of a model of sustained dust emission spanning 4 to 6 months. The total dust mass ejected is estimated at $sim$6--25$times10^6$ kg. We assume a time-independent power-law size distribution function, with particles in the micrometer to centimeter size range. Based on the quality of the fits to the isophote fields, an anisotropic emission pattern is favored against an isotropic one, in which the particle ejection is concentrated toward high latitudes ($pm45^circ$ to $pm90^circ$) in a high obliquity object ($I$=80$^circ$). This seasonally-driven ejection behavior, along with the modeled particle ejection velocities, are in remarkable agreement to those we found for P/2010 R2 (La Sagra) citep{Moreno11a}.
We present observations of main-belt comet 259P/Garradd from four months prior to its 2017 perihelion passage to five months after perihelion using the Gemini North and South telescopes. The object was confirmed to be active during this period, placing it among seven MBCs confirmed to have recurrent activity. We find an average net pre-perihelion dust production rate for 259P in 2017 of dM/dt = 4.6+/-0.2 kg/s (assuming grain densities of rho = 2500 kg/m^3 and a mean effective particle size of a_d = 2 mm) and a best-fit start date of detectable activity of 2017 April 22+/-1, when the object was at a heliocentric distance of r_h = 1.96-/+0.03 au and a true anomaly of nu = 313.9+/-0.4 deg. We estimate the effective active fraction of 259Ps surface area to be from f_act ~ 7x10^-3 to f_act ~ 6x10^-2 (corresponding to effective active areas of A_act ~ 8x10^3 m^2 to A_act ~ 7x10^4 m^2) at the start of its 2017 active period. A comparison of estimated total dust masses measured for 259P in 2008 and 2017 shows no evidence of changes in activity strength between the two active apparitions. The heliocentric distance of 259Ps activity onset point is much smaller than those of other MBCs, suggesting that its ice reservoirs may be located at greater depths than on MBCs farther from the Sun, increasing the time needed for a solar irradiation-driven thermal wave to reach subsurface ice. We suggest that deeper ice on 259P could be a result of more rapid ice depletion caused by the objects closer proximity to the Sun compared to other MBCs.
We present observations of comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS 1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed from August 2010 through February 2011, while a dust trail aligned with the objects orbit plane is also observed from December 2010 through August 2011. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between August 2010 and December 2010, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H_R=17.9+/-0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an albedo of p=0.05. Using optical spectroscopy, we find no evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q_CN<6x10^23 mol/s, from which we infer an H2O production rate of Q_H2O<10^26 mol/s. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is likely representative of other objects in the same region of the main belt, though the relatively close proximity of the 13:6 mean-motion resonance with Jupiter and the (3,-2,-1) three-body mean-motion resonance with Jupiter and Saturn mean that dynamical instability on larger timescales cannot be ruled out.
Main belt comets (MBCs) are a peculiar class of volatile-containing objects with comet-like morphology and asteroid-like orbits. However, MBCs are challenging targets to study remotely due to their small sizes and the relatively large distance they are from the Sun and the Earth. Recently, a number of weakly active short-period comets have been identified that might originate in the asteroid main belt. Among all of the known candidates, comet 66P/du Toit has been suggested to have one of the highest probabilities of coming from the main belt. We obtained medium and high-resolution spectra of 66P from 300-2500 nm with the X-shooter/VLT and the UVES/VLT instruments in July 2018. We also obtained a series of narrow-band images of 66P to monitor the gas and dust activity between May and July 2018 with TRAPPIST-South. In addition, we applied a dust model to characterize the dust coma of 66P and performed dynamical simulations to study the orbital evolution of 66P. We derive the OPR of ammonia (NH$_3$) in 66P to be 1.08$pm$0.06, which corresponds to a nuclear spin temperature of $sim$34 K. We computed the production rates of OH, NH, CN, C$_3,$ and C$_2$ radicals and measured the dust proxy, Af$rho$. The dust analysis reveals that the coma can be best-fit with an anisotropic model and the peak dust production rate is about 55 kg s$^{-1}$ at the perihelion distance of 1.29 au. Dynamical simulations show that 66P is moderately asteroidal with the capture time, t$_{cap} sim 10^4$ yr. Our observations demonstrate that the measured physical properties of 66P are consistent with other typical short-period comets and differ significantly from other MBCs. Therefore, 66P is unlikely to have a main belt origin.
The dust emission from active asteroids is likely driven by collisions, fast rotation, sublimation of embedded ice, and combinations of these. Characterising these processes leads to a better understanding of their respective influence on the evolution of the asteroid population. We study the role of fast rotation in the active asteroid 358P (P 2012/T1). We obtained two nights of deep imaging of 358P with SOAR/Goodman and VLT/FORS2. We derived the rotational light curve from time-resolved photometry and searched for large fragments and debris > 8 mm in a stacked, ultra-deep image. The nucleus has an absolute magnitude of m_R=19.68, corresponding to a diameter of 530 m for standard assumptions on the albedo and phase function of a C-type asteroid. We do not detect fragments or debris that would require fast rotation to reduce surface gravity to facilitate their escape. The 10-hour light curve does not show an unambiguous periodicity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا