Do you want to publish a course? Click here

Atom trapping in a bottle beam created by a diffractive optical element

328   0   0.0 ( 0 )
 Added by Mark Saffman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.



rate research

Read More

We demonstrate three-dimensional trapping of individual Rydberg atoms in holographic optical bottle beam traps. Starting with cold, ground-state $^{87}$Rb atoms held in standard optical tweezers, we excite them to $nS_{1/2}$, $nP_{1/2}$, or $nD_{3/2}$ Rydberg states and transfer them to a hollow trap at 850 nm. For principal quantum numbers $60 leqslant n leqslant 90$, the measured trapping time coincides with the Rydberg state lifetime in a 300~K environment. We show that these traps are compatible with quantum information and simulation tasks by performing single qubit microwave Rabi flopping, as well as by measuring the interaction-induced, coherent spin-exchange dynamics between two trapped Rydberg atoms separated by 40 $mu$m. These results will find applications in the realization of high-fidelity quantum simulations and quantum logic operations with Rydberg atoms.
We demonstrate the possibility of trapping about one hundred million rubidium atoms in a magneto-optical trap with several of the beams passing through a transparent atom chip mounted on a vacuum cell wall. The chip is made of a gold microcircuit deposited on a silicon carbide substrate, with favorable thermal conductivity. We show how a retro-reflected configuration can efficiently address the chip birefringence issues, allowing atom trapping at arbitrary distances from the chip. We also demonstrate detection through the chip, granting a large numerical aperture. This configuration is compared to other atom chip devices, and some possible applications are discussed.
We report 2D confinement of Rb 87 atoms in a Laguerre-Gaussian laser beam. Changing of the sign of the detuning from the atomic resonance dramatically alters the geometry of the confinement. With the laser detuned to the blue, the atoms are confined to the dark, central node of the Laguerre-Gaussian laser mode. This trapping method leads to low ac Stark shifts to the atomic levels. Alternatively, by detuning the laser to the red of the resonance, we confine atoms to the high intensity outer ring in a multiply-connected, toroidal configuration. We model the confined atoms to determine azimuthal intensity variations of the trapping laser, caused by slight misalignments of the Laguerre-Gaussian mode generating optics.
532 - Bum Suk Zhao , Gerard Meijer , 2010
We report on the observation of emerging beam resonances, well known as Rayleigh-Wood anomalies and threshold resonances in photon and electron diffraction, respectively, in an atom-optical diffraction experiment. Diffraction of He atom beams reflected from a blazed ruled grating at grazing incidence has been investigated. The total reflectivity of the grating as well as the intensities of the diffracted beams reveal anomalies at the Rayleigh angles of incidence, i.e., when another diffracted beam merges parallel to the grating surface. The observed anomalies are discussed in terms of the classical wave-optical model of Rayleigh and Fano.
We have studied the interference of degenerate quantum gases in a vertical optical lattice. The coherence of the atoms leads to an interference pattern when the atoms are released from the lattice. This has been shown for a Bose-Einstein condensate in early experiments. Here we demonstrate that also for fermions an interference pattern can be observed provided that the momentum distribution is smaller then the recoil momentum of the lattice. Special attention is given to the role of interactions which wash out the interference pattern for a condensate but do not affect a spin polarized Fermi gas, where collisions at ultra cold temperatures are forbidden. Comparing the interference of the two quantum gases we find a clear superiority of fermions for trapped atom interferometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا