No Arabic abstract
Although the magnetoelectric effects - the mutual control of electric polarization by magnetic fields and magnetism by electric fields, have been intensively studied in a large number of inorganic compounds and heterostructures, they have been rarely observed in organic materials. Here we demonstrate magnetoelectric coupling in a metal-organic framework [(CH3)2NH2]Mn(HCOO)3 which exhibits an order-disorder type of ferroelectricity below 185 K. The magnetic susceptibility starts to deviate from the Curie-Weiss law at the paraelectric-ferroelectric transition temperature, suggesting an enhancement of short-range magnetic correlation in the ferroelectric state. Electron spin resonance study further confirms that the magnetic state indeed changes following the ferroelectric phase transition. Inversely, the ferroelectric polarization can be improved by applying high magnetic fields. We interpret the magnetoelectric coupling in the paramagnetic state in the metal-organic framework as a consequence of the magnetoelastic effect that modifies both the superexchange interaction and the hydrogen bonding.
Hybrid organometallic systems offer a wide range of functionalities, including magnetoelectric interactions. However, the ability to design on-demand ME coupling remains challenging despite a variety of host-guest configurations and ME phases coexistence possibilities. Here, we report the effect of metal-ion substitution on the magnetic and electric properties in the paramagnetic ferroelectric DMAAS crystals. Doing so we are able to induce and even tune a sign of the ME interactions in the paramagnetic ferroelectric state. Both studied samples with 6.5% and 20% of Cr become paramagnetic, contrary to the initial diamagnetic compound. Due to the isomorphous substitution with Cr the ferroelectric phase transition temperature increases nonlinearly, with the shift being larger for the sample with Cr content of 6.5%. A magnetic field applied along the polar c axis increases ferroelectricity for this sample and shifts Tc to higher values, while inverse effects are observed for sample containing 20% of Cr. The ME coupling coefficient of 1.7ns/m found for a crystal with 20% of Cr is among the highest reported up to now. The observed sign change of ME coupling coefficient with a small change in Cr content paves the way for ME coupling engineering.
Achieving large-area uniform two-dimensional (2D) metal-organic frameworks (MOFs) and controlling their electronic properties on inert surfaces is a big step towards future applications in electronic devices. Here we successfully fabricated a 2D monolayer Cu-dicyanoanthracene (DCA) MOF with long-range order on an epitaxial graphene surface. Its structural and electronic properties are studied by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) complemented by density-functional theory (DFT) calculations. We demonstrate access to multiple molecular charge states in the 2D MOF using tip-induced local electric fields. We expect that a similar strategy could be applied to fabricate and characterize 2D MOFs with exotic, engineered electronic states.
Combining first-principles density functional theory simulations with IR and Raman experiments, we determine the frequency shift of vibrational modes of CO2 when physiadsorbed in the iso-structural metal organic framework materials Mg-MOF74 and Zn-MOF74. Surprisingly, we find that the resulting change in shift is rather different for these two systems and we elucidate possible reasons. We explicitly consider three factors responsible for the frequency shift through physiabsorption, namely (i) the change in the molecule length, (ii) the asymmetric distortion of the CO$_2$ molecule, and (iii) the direct influence of the metal center. The influence of each factor is evaluated separately through different geometry considerations, providing a fundamental understanding of the frequency shifts observed experimentally.
Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Ho$_{x}$La$_{3-x}$Ga$_5$SiO$_{14}$, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.
In this letter, we address magnetization switching by oxygen adsorption in porous metal-organic framework systems. To this end, we construct a simple localized spin model combined with a Langmuir-type formula for oxygen adsorption and study its finite-temperature properties using Monte Carlo simulation. We successfully explain the main features of this phenomenon, such as the discontinuous changes in magnetic states, sensitivity of the magnetic transition temperatures to oxygen pressure, and absence of singularities in adsorbed oxygen. Based on this model, we also reproduce the observed magnetic transition temperatures for a typical value of oxygen adsorption energy.