Do you want to publish a course? Click here

The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3

227   0   0.0 ( 0 )
 Added by Hai Fu
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar archeology shows that massive elliptical galaxies today formed rapidly about ten billion years ago with star formation rates above several hundreds solar masses per year (M_sun/yr). Their progenitors are likely the sub-millimeter-bright galaxies (SMGs) at redshifts (z) greater than 2. While SMGs mean molecular gas mass of 5x10^10 M_sun can explain the formation of typical elliptical galaxies, it is inadequate to form ellipticals that already have stellar masses above 2x10^11 M_sun at z ~ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive SMGs at z = 2.3. The system is currently forming stars at a tremendous rate of 2,000 M_sun/yr. With a star formation efficiency an order-of-magnitude greater than that of normal galaxies, it will quench the star formation by exhausting the gas reservoir in only ~200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of ~4x10^11 M_sun. Our observations show that gas-rich major galaxy mergers, concurrent with intense star formation, can form the most massive elliptical galaxies by z ~ 1.5.



rate research

Read More

134 - N. Bouche 2013
Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxys halo, delivering not just fuel for star-formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. Here we report observations showing these distinct signatures near a typical distant star-forming galaxy where the gas is detected using a background quasar passing 26 kpc from the host. Our observations indicate that gas accretion plays a major role in galaxy growth since the estimated accretion rate is comparable to the star-formation rate.
243 - R.J. Bouwens 2009
Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ~ 8 galaxies that, together with reports of a gamma-ray burst at z ~ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ~ 7-8 galaxies suggest substantial star formation at z > 9-10. Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ~ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ~ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (~10%) at this time than it is just ~200 Myr later at z ~ 8. This demonstrates how rapid galaxy build-up was at z ~ 10, as galaxies increased in both luminosity density and volume density from z ~ 8 to z ~ 10. The 100-200 Myr before z ~ 10 is clearly a crucial phase in the assembly of the earliest galaxies.
135 - A.L.R. Danielson 2010
We present an analysis of the molecular and atomic gas emission in the rest-frame far-infrared and sub-millimetre, from the lensed z=2.3 sub-millimetre galaxy SMM J2135-0102. We obtain very high signal-to-noise detections of 11 transitions from 3 species and limits on a further 20 transitions from 9 species. We use the 12CO, [CI] and HCN line strengths to investigate the gas mass, kinematic structure and interstellar medium (ISM) chemistry, and find strong evidence for a two-phase medium comprising a hot, dense, luminous component and an underlying extended cool, low-excitation massive component. Employing photo-dissociation region models we show that on average the molecular gas is exposed to a UV radiation field that is ~1000 x more intense than the Milky Way, with star-forming regions having a characteristic density of n~10^4 /cm^3. These conditions are similar to those found in local ULIRGs and in the central regions of typical starburst galaxies, even though the star formation rate is far higher in this system. The 12CO spectral line energy distribution and line profiles give strong evidence that the system comprises multiple kinematic components with different conditions, including temperature, and line ratios suggestive of high cosmic ray flux within clouds. We show that, when integrated over the galaxy, the gas and star-formation surface densities appear to follow the Kennicutt-Schmidt relation, although when compared to high-resolution sub-mm imaging, our data suggest that this relation breaks down on scales of <100pc. By virtue of the lens amplification, these observations uncover a wealth of information on the star formation and ISM at z~2.3 at a level of detail that has only recently become possible at z<0.1, and show the potential physical properties that will be studied in unlensed galaxies when ALMA is in full operation. (Abridged).
We study the stellar mass assembly of the Spiderweb Galaxy (MRC 1138-262), a massive z = 2.2 radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by z = 0, increasing its stellar mass by up to a factor of ~ 2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.
We present the discovery of an isolated compact elliptical (cE) galaxy, found during a search of SDSS DR7 for cEs, and for which we obtained WHT/ACAM imaging. It is ~900 kpc distant from its nearest neighbour, has an effective r-band radius of ~500 pc and a B-band mean surface brightness within its effective radius of 19.75 mag/arcsec. Serendipitous deep SuprimeCam imaging shows that there is no underlying disk. Its isolated position suggests that there is an alternative channel to the stripping scenario for the formation of compact ellipticals. We also report analysis of recent deeper imaging of the previous candidate free-flying cE, which shows that it is, in fact, a normal dwarf elliptical (dE). Hence the new cE reported here is the first confirmed isolated compact elliptical to be found in the field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا