Do you want to publish a course? Click here

Sparse Approximate Inference for Spatio-Temporal Point Process Models

92   0   0.0 ( 0 )
 Added by Botond Cseke
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computa- tionally challenging both due to the high resolution modelling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretised log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both non-linear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary.

rate research

Read More

Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called textit{Type II maximum likelihood} or ML-II). An alternative learning procedure is to infer the posterior over hyperparameters in a hierarchical specification of GPs we call textit{Fully Bayesian Gaussian Process Regression} (GPR). This work considers two approximation schemes for the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC) yielding a sampling-based approximation and 2) Variational Inference (VI) where the posterior over hyperparameters is approximated by a factorized Gaussian (mean-field) or a full-rank Gaussian accounting for correlations between hyperparameters. We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.
Integro-difference equation (IDE) models describe the conditional dependence between the spatial process at a future time point and the process at the present time point through an integral operator. Nonlinearity or temporal dependence in the dynamics is often captured by allowing the operator parameters to vary temporally, or by re-fitting a model with a temporally-invariant linear operator in a sliding window. Both procedures tend to be excellent for prediction purposes over small time horizons, but are generally time-consuming and, crucially, do not provide a global prior model for the temporally-varying dynamics that is realistic. Here, we tackle these two issues by using a deep convolution neural network (CNN) in a hierarchical statistical IDE framework, where the CNN is designed to extract process dynamics from the process most recent behaviour. Once the CNN is fitted, probabilistic forecasting can be done extremely quickly online using an ensemble Kalman filter with no requirement for repeated parameter estimation. We conduct an experiment where we train the model using 13 years of daily sea-surface temperature data in the North Atlantic Ocean. Forecasts are seen to be accurate and calibrated. A key advantage of our approach is that the CNN provides a global prior model for the dynamics that is realistic, interpretable, and computationally efficient. We show the versatility of the approach by successfully producing 10-minute nowcasts of weather radar reflectivities in Sydney using the same model that was trained on daily sea-surface temperature data in the North Atlantic Ocean.
We study the spatio-temporal prediction problem, which has attracted the attention of many researchers due to its critical real-life applications. In particular, we introduce a novel approach to this problem. Our approach is based on the Hawkes process, which is a non-stationary and self-exciting point process. We extend the formulations of a standard point process model that can represent time-series data to represent a spatio-temporal data. We model the data as nonstationary in time and space. Furthermore, we partition the spatial region we are working on into subregions via an adaptive decision tree and model the source statistics in each subregion with individual but mutually interacting point processes. We also provide a gradient based joint optimization algorithm for the point process and decision tree parameters. Thus, we introduce a model that can jointly infer the source statistics and an adaptive partitioning of the spatial region. Finally, we provide experimental results on real-life data, which provides significant improvement due to space adaptation and joint optimization compared to standard well-known methods in the literature.
We develop a sequential low-complexity inference procedure for Dirichlet process mixtures of Gaussians for online clustering and parameter estimation when the number of clusters are unknown a-priori. We present an easily computable, closed form parametric expression for the conditional likelihood, in which hyperparameters are recursively updated as a function of the streaming data assuming conjugate priors. Motivated by large-sample asymptotics, we propose a novel adaptive low-complexity design for the Dirichlet process concentration parameter and show that the number of classes grow at most at a logarithmic rate. We further prove that in the large-sample limit, the conditional likelihood and data predictive distribution become asymptotically Gaussian. We demonstrate through experiments on synthetic and real data sets that our approach is superior to other online state-of-the-art methods.
Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consitent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا