Do you want to publish a course? Click here

Sensitivity to perturbations and quantum phase transitions

122   0   0.0 ( 0 )
 Added by Diego A. Wisniacki
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The local density of states or its Fourier transform, usually called fidelity amplitude, are important measures of quantum irreversibility due to imperfect evolution. In this Rapid Communication we study both quantities in a paradigmatic many body system, the Dicke Hamiltonian, where a single-mode bosonic field interacts with an ensemble of N two-level atoms. This model exhibits a quantum phase transition in the thermodynamic limit, while for finite instances the system undergoes a transition from quasi-integrability to quantum chaotic. We show that the width of the local density of states clearly points out the imprints of the transition from integrability to chaos but no trace remains of the quantum phase transition. The connection with the decay of the fidelity amplitude is also established.



rate research

Read More

Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to non-adiabaticity and measurement noise. Finally, we show that the quasi-adiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.
We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal phase transitions (based on the type of non-analiticity of free energy), and we find that usual fidelity criteria for identifying critical points is more applicable to the case of $lambda$ transitions (divergent second derivatives of free energy). Our study also reveals limitations of the fidelity approach: sensitivity to high temperature thermal fluctuations that wash out information about the transition, and inability of fidelity to distinguish between crossovers and proper phase transitions. In spite of these limitations, however, we find that fidelity remains a good pre-criterion for testing thermal phase transitions, which we use to analyze the non-zero temperature phase diagram of the Lipkin-Meshkov-Glick model.
A unified description of i) classical phase transitions and their remnants in finite systems and ii) quantum phase transitions is presented. The ensuing discussion relies on the interplay between, on the one hand, the thermodynamic concepts of temperature and specific heat and on the other, the quantal ones of coupling strengths in the Hamiltonian. Our considerations are illustrated in an exactly solvable model of Plastino and Moszkowski [Il Nuovo Cimento {bf 47}, 470 (1978)].
In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas in NESS-QPTs this distinction may fade off. The approach described in this review, among other things, can quantitatively assess the quantum character of such critical phenomena. This framework is applied to a paradigmatic class of lattice Fermion systems with local reservoirs, characterised by Gaussian non-equilibrium steady states. The relations between the behaviour of the geometric phase curvature, the divergence of the correlation length, the character of the criticality and the gap - either Hamiltonian or dissipative - are reviewed.
Using the Wherl entropy, we study the delocalization in phase-space of energy eigenstates in the vicinity of avoided crossing in the Lipkin-Meshkov-Glick model. These avoided crossing, appearing at intermediate energies in a certain parameter region of the model, originate classically from pairs of trajectories lying in different phase space regions, which contrary to the low energy regime, are not connected by the discrete parity symmetry of the model. As coupling parameters are varied, a sudden increase of the Wherl entropy is observed for eigenstates close to the critical energy of the excited-state quantum phase transition (ESQPT). This allows to detect when an avoided crossing is accompanied by a superposition of the pair of classical trajectories in the Husimi functions of eigenstates. This superposition yields an enhancement of dynamical tunneling, which is observed by considering initial Bloch states that evolve partially into the partner region of the paired classical trajectories, thus breaking the quantum-classical correspondence in the evolution of observables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا