Do you want to publish a course? Click here

Spectral matching for abundances of 848 stars of the giant branches of the globular cluster {omega} Centauri

96   0   0.0 ( 0 )
 Added by Jeffrey Simpson
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the effective temperatures, surface gravities and abundances of iron, carbon and barium of 848 giant branch stars, of which 557 also have well-defined nitrogen abundances, of the globular cluster {omega} Centauri. This work used photometric sources and lower resolution spectra for this abundance analysis. Spectral indices were used to estimate the oxygen abundance of the stars, leading to a determination of whether a particular star was oxygen-rich or oxygen-poor. The 557-star subset was analyzed in the context of evolutionary groups, with four broad groups identified. These groups suggest that there were at least four main four periods of star formation in the cluster. The exact order of these star formation events is not yet understood. These results compare well with those found at higher resolution and show the value of more extensive lower resolution spectral surveys. They also highlight the need for large samples of stars when working with a complex object like {omega} Cen.



rate research

Read More

We have determined stellar parameters and abundances for 221 giant branch stars in the globular cluster {omega} Centauri. A combination of photometry and lower-resolution spectroscopy was used to determine temperature, gravity, metallicity, [C/Fe], [N/Fe] and [Ba/Fe]. These abundances agree well with those found by previous researchers and expand the analysed sample of the cluster. k-means clustering analysis was used to group the stars into four homogeneous groups based upon these abundances. These stars show the expected anticorrelation in [C/Fe] to [N/Fe]. We investigated the distribution of CN-weak/strong stars on the colour-magnitude diagram. Asymptotic giant branch stars, which were selected from their position on the colour-magnitude diagram, were almost all CN-weak. This is in contrast to the red giant branch where a large minority were CN-strong. The results were also compared with cluster formation and evolution models. Overall, this study shows that statistically significant elemental and evolutionary conclusions can be obtained from lower resolution spectroscopy.
We present manganese abundances in 10 red-giant members of the globular cluster Omega Centauri; 8 stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in Omega Cen overlap those of Milky Way stars in the metal poor Omega Cen populations ([Fe/H] ~ -1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for Omega Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in Omega Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities < -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in Omega Cen. The dominance of low-metallicity stars in the chemical evolution of Omega Cen has been noted previously in the s-process elements where enrichment from metal-poor AGB stars is indicated. In addition, copper, which also has metallicity dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 Omega Cen populations.
[ABRIDGED] $omega$ Centauri (NGC 5139) contains large numbers of variable stars of different types and, in particular, more than a hundred RR Lyrae stars. We have conducted a variability survey of $omega$ Cen in the NIR, using ESOs 4.1m Visible and Infrared Survey Telescope for Astronomy (VISTA). This is the first paper of a series describing our results. $omega$ Cen was observed using VIRCAM mounted on VISTA. A total of 42 and 100 epochs in $J$ and $K_{rm S}$, respectively, were obtained, distributed over a total timespan of 352 days. PSF photometry was performed, and periods of the known variable stars were improved when necessary using an ANOVA analysis. An unprecedented homogeneous and complete NIR catalogue of RR Lyrae stars in the field of $omega$ Cen was collected, allowing us to study, for the first time, all the RR Lyrae stars associated to the cluster, except 4 located far away from the cluster center. Membership status, subclassifications between RRab and RRc subtypes, periods, amplitudes, and mean magnitudes were derived for all the stars in our sample. Additionally, 4 new RR Lyrae stars were discovered, 2 of them with high probability of being cluster members. The distribution of $omega$ Cen stars in the Bailey (period-amplitude) diagram is also discussed. Reference lines in this plane, for both Oosterhoff type I (OoI) and II (OoII) components, are provided. In the present paper, we clarify the status of many (candidate) RR Lyrae stars that had been unclear in previous studies. This includes stars with anomalous positions in the color-magnitude diagram, uncertain periods or/and variability types, and possible field interlopers. We conclude that $omega$ Cen hosts a total of 88 RRab and 101 RRc stars, for a grand total of 189 likely members. We confirm that most RRab stars in the cluster belong to an OoII component, as previously found using visual data.
79 - D. Magurno 2019
We present a detailed spectroscopic analysis of RR Lyrae (RRL) variables in the globular cluster NGC 5139 (omega Cen). We collected optical (4580-5330 A), high resolution (R = 34,000), high signal-to-noise ratio (200) spectra for 113 RRLs with the multi-fiber spectrograph M2FS at the Magellan/Clay Telescope at Las Campanas Observatory. We also analysed high resolution (R = 26,000) spectra for 122 RRLs collected with FLAMES/GIRAFFE at the VLT, available in the ESO archive. The current sample doubles the literature abundances of cluster and field RRLs in the Milky Way based on high resolution spectra. Equivalent width measurements were used to estimate atmospheric parameters, iron, and abundance ratios for alpha (Mg, Ca, Ti), iron peak (Sc, Cr, Ni, Zn), and s-process (Y) elements. We confirm that omega Cen is a complex cluster, characterised by a large spread in the iron content: -2.58 < [Fe/H] < -0.85. We estimated the average cluster abundance as [Fe/H] = -1.80 +- 0.03, with sigma = 0.33 dex. Our findings also suggest that two different RRL populations coexist in the cluster. The former is more metal-poor ([Fe/H] < -1.5), with almost solar abundance of Y. The latter is less numerous, more metal-rich, and yttrium enhanced ([Y/Fe] > 0.4). This peculiar bimodal enrichment only shows up in the s-process element, and it is not observed among lighter elements, whose [X/Fe] ratios are typical for Galactic globular clusters.
In this letter, the results of our low-resolution spectroscopic survey for identifying the hydrogen-deficient (H-deficient) stars in the red giant sample of the globular cluster Omega Cen are reported. Spectral analyses were carried out on the basis of the strengths of (0,0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra not as expected for their well determined stellar parameters. The Mg abundances for the program stars were determined from subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. The derived Mg abundances for the program stars were as expected for the red giants of Omega Cen (Norris & Da Costa 1995), except for the four identified candidates. Determined Mg abundances of these four candidates are much lower than that expected for the red giants of Omega Cen, and are unacceptable based on the strengths of Mg b triplet in their observed spectra. Hence, the plausible reason for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium enriched red giants of Omega Cen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا