Ergodic transition in a simple model of the continuous double auction


Abstract in English

We study a phenomenological model for the continuous double auction, equivalent to two independent $M/M/1$ queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe an intermittent behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen.

Download