Do you want to publish a course? Click here

Polarimetry and the High-Energy Emission Mechanisms in Quasar Jets. The Case of PKS 1136-135

114   0   0.0 ( 0 )
 Added by Eric S. Perlman
 Publication date 2013
  fields Physics
and research's language is English
 Authors Mihai Cara




Ask ChatGPT about the research

Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized CMB (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high- resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136$-$135 obtained with the {it Hubble Space Telescope.} We find that several knots are highly polarized in the optical, with fractional polarization $Pi>30%$. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor $gamma sim 1$, and the jet is also very highly beamed ($delta geq 20$) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work.



rate research

Read More

The emission mechanisms in extragalactic jets include synchrotron and various inverse-Compton processes. At low (radio through infrared) energies, it is widely agreed that synchrotron emission dominates in both low-power (FR I) and high-power (FR II and quasar) jets, because of the power-law nature of the spectra observed and high polarizations. However, at higher energies, the emission mechanism for high-power jets at kpc scales is hotly debated. Two mechanisms have been proposed: either inverse-Compton of cosmic microwave background photons or synchrotron emission from a second, high-energy population of electrons. Here we discuss optical polarimetry as a method for diagnosing the mechanism for the high-energy emission in quasar jets, as well as revealing the jets three-dimensional energetic and magnetic field structure. We then discuss high-energy emission mechanisms for powerful jets in the light of the HST polarimetry of PKS 1136-135.
79 - Eric S. Perlman 2019
Jets are a ubiquitous part of the accretion process, created in AGN, by a coupling between the magnetic field near the central black hole and inflowing material. We point out what advances can be achieved by new technologies, concentrating on kiloparsec scales, beyond the Bondi radius, where accretion stops. Here, jets profoundly influence their host galaxy and the surrounding clusters and groups, transporting prodigious amounts of matter and energies to scales of hundreds of kpc. Basic questions still remain regarding jet physics, which new instruments can advance greatly. The ngVLA, LOFAR, JWST and LUVOIR, as well as a Chandra successor, will give higher angular resolution and sensitivity. This will allow us to probe the emission mechanisms and dynamics of jets, and search for links between these areas, magnetic fields, particle acceleration and high-energy emission mechanisms. We stress the need for polarimetry in the X-ray and optical, critical to many of the most important questions in jet physics. We hope to directly probe resolved, flaring components, which for the first time will allow us to reveal how jets respond to stimuli and link statics and dynamics.
PKS 1413+135 is one of the most peculiar blazars known. Its strange properties led to the hypothesis almost four decades ago that it is gravitationally lensed by a mass concentration associated with an intervening galaxy. It exhibits symmetric achromatic variability, a rare form of variability that has been attributed to gravitational milli-lensing. It has been classified as a BL Lac object, and is one of the rare objects in this class with a visible counterjet. BL Lac objects have jet axes aligned close to the line of sight. It has also been classified as a compact symmetric object, which have jet axes not aligned close to the line of sight. Intensive efforts to understand this blazar have hitherto failed to resolve even the questions of the orientation of the relativistic jet, and the host galaxy. Answering these two questions is important as they challenge our understanding of jets in active galactic nuclei and the classification schemes we use to describe them. We show that the jet axis is aligned close to the line of sight and PKS 1413+135 is almost certainly not located in the apparent host galaxy, but is a background object in the redshift range $0.247 < z < 0.5$. The intervening spiral galaxy at $z = 0.247$ provides a natural host for the putative lens responsible for symmetric achromatic variability and is shown to be a Seyfert 2 galaxy. We also show that, as for the radio emission, a multizone model is needed to account for the high-energy emission.
Flat-spectrum radio-quasars (FSRQs) are rarely detected at very-high-energies (VHE; E>100 GeV) due to their low-frequency-peaked SEDs. At present, only 6 FSRQs are known to emit VHE photons, representing only 7% of the VHE extragalactic catalog. Following the detection of MeV-GeV gamma-ray flaring activity from the FSRQ PKS 0736+017 (z=0.189) with Fermi, the H.E.S.S. array of Cherenkov telescopes triggered ToO observations on February 18, 2015, with the goal of studying the gamma-ray emission in the VHE band. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft-X-rays and optical/UV, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, the ATOM, the KAIT and the ASAS-SN telescope. VHE emission from PKS 0736+017 was detected with H.E.S.S. during the night of February 19, 2015, only. Fermi data indicate the presence of a gamma-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling time-scale of around six hours. The gamma-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The gamma-ray observations with H.E.S.S. and Fermi are used to put constraints on the location of the gamma-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line-region with a bulk Lorentz factor $simeq 20$, or at the level of the radius of the dusty torus with Gamma > 60. PKS 0736+017 is the seventh FSRQ known to emit VHE photons and, at z=0.189, is the nearest so far. The location of the gamma-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.
107 - Preeti Kharb 2012
We present results from deep (70 ks) Chandra ACIS observations and Hubble Space Telescope ACS F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C345). These observations reveal X-ray and optical emission from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles - the X-ray emission is brightest at the first prominent kpc jet bend. A picture of a helical kpc jet with the first kpc-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end however peaks at about 0.4 (~3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.2 (~1.3 kpc) in the short projected jet of 3C345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1 downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the pc-scale radio and the kpc-scale radio/X-ray data, we derive constraints on the jet Lorentz factors (Gamma_jet) and inclination angles (theta): for a constant jet speed from pc- to kpc-scales, we obtain a Gamma_jet of ~70 for 0106+013, and ~40 for 3C345. On relaxing this assumption, we derive a Gamma_jet of ~2.5 for both the sources. Upper limits on theta of ~13 degrees are obtained for the two quasars. (ABRIDGED)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا