Do you want to publish a course? Click here

Four transformations on the Catalan triangle

180   0   0.0 ( 0 )
 Added by Yidong Sun
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we define four transformations on the classical Catalan triangle $mathcal{C}=(C_{n,k})_{ngeq kgeq 0}$ with $C_{n,k}=frac{k+1}{n+1}binom{2n-k}{n}$. The first three ones are based on the determinant and the forth is utilizing the permanent of a square matrix. It not only produces many known and new identities involving Catalan numbers, but also provides a new viewpoint on combinatorial triangles.



rate research

Read More

247 - Andrei K. Svinin 2016
We consider Tuenter polynomials as linear combinations of descending factorials and show that coefficients of these linear combinations are expressed via a Catalan triangle of numbers. We also describe a triangle of coefficients in terms of some polynomials.
103 - Guoce Xin , Yueming Zhong 2019
A polynomial $A(q)=sum_{i=0}^n a_iq^i$ is said to be unimodal if $a_0le a_1le cdots le a_kge a_{k+1} ge cdots ge a_n$. We investigate the unimodality of rational $q$-Catalan polynomials, which is defined to be $C_{m,n}(q)= frac{1}{[n+m]} left[ m+n atop nright]$ for a coprime pair of positive integers $(m,n)$. We conjecture that they are unimodal with respect to parity, or equivalently, $(1+q)C_{m+n}(q)$ is unimodal. By using generating functions and the constant term method, we verify our conjecture for $mle 5$ in a straightforward way.
262 - Pavel Galashin , Thomas Lam 2021
Given a permutation $f$, we study the positroid Catalan number $C_f$ defined to be the torus-equivariant Euler characteristic of the associated open positroid variety. We introduce a class of repetition-free permutations and show that the corresponding positroid Catalan numbers count Dyck paths avoiding a convex subset of the rectangle. We show that any convex subset appears in this way. Conjecturally, the associated $q,t$-polynomials coincide with the generalized $q,t$-Catalan numbers that recently appeared in relation to the shuffle conjecture, flag Hilbert schemes, and Khovanov-Rozansky homology of Coxeter links.
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one triangle. Triangle switches can be used to define Markov chains which generate graphs with a given degree sequence and with many more triangles (3-cycles) than is typical in a uniformly random graph with the same degrees. We show that the set of triangle switches connects the set of all $d$-regular graphs on $n$ vertices, for all $dgeq 3$. Hence, any Markov chain which assigns positive probability to all triangle switches is irreducible on these graphs. We also investigate this question for 2-regular graphs.
274 - Takuro Abe , Hiroaki Terao 2010
Let $W$ be a finite Weyl group and $A$ be the corresponding Weyl arrangement. A deformation of $A$ is an affine arrangement which is obtained by adding to each hyperplane $HinA$ several parallel translations of $H$ by the positive root (and its integer multiples) perpendicular to $H$. We say that a deformation is $W$-equivariant if the number of parallel hyperplanes of each hyperplane $Hin A$ depends only on the $W$-orbit of $H$. We prove that the conings of the $W$-equivariant deformations are free arrangements under a Shi-Catalan condition and give a formula for the number of chambers. This generalizes Yoshinagas theorem conjectured by Edelman-Reiner.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا