Do you want to publish a course? Click here

The Cosmic Star Formation Rate from the Faintest Galaxies in the Unobservable Universe

143   0   0.0 ( 0 )
 Added by Matthew Kistler
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of high-z galaxies and gamma-ray bursts now allow for empirical studies during reionization. However, even deep surveys see only the brightest galaxies at any epoch and must extrapolate to arbitrary lower limits to estimate the total rate of star formation. We first argue that the galaxy populations seen in LBG surveys yield a GRB rate at z > 8 that is an order of magnitude lower than observed. We find that integrating the inferred UV luminosity functions down to M_UV ~ -10 brings LBG- and GRB-inferred SFR density values into agreement up to z ~ 8. GRBs, however, favor a far larger amount of as yet unseen star formation at z > 9. We suggest that the SFR density may only slowly decline out to z ~ 11, in accord with WMAP and Planck reionization results, and that GRBs may be useful in measuring the scale of this multitude of dwarf galaxies.



rate research

Read More

107 - M. S. Bothwell 2011
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the IRAS IIFSCz catalogue, and the GALEX AIS respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy Survey (LVL), allowing us to extend these luminosity functions to lower luminosities (~10^6 L_sun), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the SFR distribution function for the local Universe. We find that it has a Schechter form, that the faint-end slope has a constant value (to the limits of our data) of {alpha} = -1.51 pm 0.08, and the characteristic SFR is 9.2 M_sun/yr. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 pm 0.0016 M_sun/yr/Mpc^-3, of which ~ 20% is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 pm 1% is due to LIRGs, and 0.7 pm 0.2% is occuring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line of sight orientation effects as well as conventional internal extinction.
We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB and the mass of dark-matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIBxCMB lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured one up to at least z=4. The obscured and unobscured star formation rate densities are compatible at $1sigma$ at z=5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from $sim$0.8 at z$=$0 to $sim$8 at z$=$4. At 2$<$z$<$4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimeter galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(M$_h$/M$_{odot}$)=12.77$_{-0.125}^{+0.128}$ for the mass of the typical dark matter halo contributing to the CIB at z=2. Finally, we also computed using a Fisher matrix analysis how the uncertainties on the cosmological parameters affect the recovered CIB model parameters and find that the effect is negligible.
120 - Shannon G. Patel 2011
We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.6<z<0.9. We used a low-dispersion prism in IMACS on the 6.5-m Baade (Magellan I) telescope to obtain spectra and measured redshifts to a precision of sigma_z/(1+z)=1% for galaxies with z<23.3 AB mag. We utilized a stellar mass-limited sample of 977 galaxies above M>1.8x10^{10} Msun to conduct our main analysis. With three different SFR indicators, (1) Spitzer MIPS 24-micron imaging, (2) SED fitting, and (3) [OII]3727 emission, we find the median specific SFR (SSFR) and SFR to decline from the low-density field to the cores of groups and a rich cluster. For the SED and [OII] based SFRs, the decline in SSFR is roughly an order of magnitude while for the MIPS based SFRs, the decline is a factor of ~4. We find approximately the same magnitude of decline in SSFR even after removing the sample of galaxies near the cluster. Galaxies in groups and a cluster at these redshifts therefore have lower star formation (SF) activity than galaxies in the field, as is the case at z~0. We investigated whether the decline in SFR with increasing density is caused by a change in the proportion of quiescent and star forming galaxies (SFGs) or by a decline in the SFRs of SFGs. Using the rest-frame U-V and V-J colors to distinguish quiescent galaxies from SFGs we find the fraction of quiescent galaxies increases from ~32% to 79% from low to high density. In addition, we find the SSFRs of SFGs, selected based on U-V and V-J colors, to decline with increasing density by factors of ~5-6 for the SED and [OII] based SFRs. The MIPS based SSFRs for SFGs decline with a shallower slope. The order of magnitude decline in the SSFR-density relation at 0.6<z<0.9 is therefore driven by both a combination of declining SFRs of SFGs as well as a changing mix of SFGs and quiescent galaxies [ABRIDGED].
154 - Alan Dressler 2009
We present the star formation rate (SFR) and starburst fraction (SBF) for a sample of field galaxies from the ICBS intermediate-redshift cluster survey. We use [O II] and Spitzer 24 micron fluxes to measure SFRs, and 24 micron fluxes and H-delta absorption to measure of SBFs, for both our sample and a present-epoch field sample from the Sloan Digital Sky Survey (SDSS) and Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We find a precipitous decline in the SFR since z=1, in agreement with other studies, as well as a corresponding rapid decline in the fraction of galaxies undergoing long-duration moderate-amplitude starbursts. We suggest that the change in both the rate and mode of star formation could result from the strong decrease since z=1 of gas available for star formation.
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the parameters of the model to determine which physical processes are dominant and which aspects of the model are robust. Generically, we find that SF is limited by the build-up of dark matter haloes at high redshift, reaches a broad maximum at intermediate redshift, then decreases as it is quenched by lower cooling rates in hotter and lower density gas, gas exhaustion, and self-regulated feedback from stars and black holes. The higher redshift SF is therefore mostly determined by the cosmological parameters and to a lesser extent by photo-heating from reionization. The location and height of the peak in the SF history, and the steepness of the decline towards the present, depend on the physics and implementation of stellar and black hole feedback. Mass loss from intermediate-mass stars and metal-line cooling both boost the SF rate at late times. Galaxies form stars in a self-regulated fashion at a rate controlled by the balance between, on the one hand, feedback from massive stars and black holes and, on the other hand, gas cooling and accretion. Paradoxically, the SF rate is highly insensitive to the assumed SF law. This can be understood in terms of self-regulation: if the SF efficiency is changed, then galaxies adjust their gas fractions so as to achieve the same rate of production of massive stars. Self-regulated feedback from accreting black holes is required to match the steep decline in the observed SF rate below redshift two, although more extreme feedback from SF, for example in the form of a top-heavy IMF at high gas pressures, can help.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا