Nanoscale magnets might form the building blocks of next generation memories. To explore their functionality, magnetic sensing at the nanoscale is key. We present a multifunctional combination of a scanning nanometer-sized superconducting quantum interference device (nanoSQUID) and a Ni nanotube attached to an ultrasoft cantilever as a magnetic tip. We map out and analyze the magnetic coupling between the Ni tube and the Nb nanoSQUID, demonstrate imaging of an Abrikosov vortex trapped in the SQUID structure - which is important in ruling out spurious magnetic signals - and reveal the high potential of the nanoSQUID as an ultrasensitive displacement detector. Our results open a new avenue for fundamental studies of nanoscale magnetism and superconductivity.