Do you want to publish a course? Click here

The Effective Number Density of Galaxies for Weak Lensing Measurements in the LSST Project

104   0   0.0 ( 0 )
 Added by Chihway Chang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Future weak lensing surveys potentially hold the highest statistical power for constraining cosmological parameters compared to other cosmological probes. The statistical power of a weak lensing survey is determined by the sky coverage, the inverse of the noise in shear measurements, and the galaxy number density. The combination of the latter two factors is often expressed in terms of $n_{rm eff}$ -- the effective number density of galaxies used for weak lensing measurements. In this work, we estimate $n_{rm eff}$ for the Large Synoptic Survey Telescope (LSST) project, the most powerful ground-based lensing survey planned for the next two decades. We investigate how the following factors affect the resulting $n_{rm eff}$ of the survey with detailed simulations: (1) survey time, (2) shear measurement algorithm, (3) algorithm for combining multiple exposures, (4) inclusion of data from multiple filter bands, (5) redshift distribution of the galaxies, and (6) masking and blending. For the first time, we quantify in a general weak lensing analysis pipeline the sensitivity of $n_{rm eff}$ to the above factors. We find that with current weak lensing algorithms, expected distributions of observing parameters, and all lensing data ($r$- and $i$-band, covering 18,000 degree$^{2}$ of sky) for LSST, $n_{rm eff} approx37$ arcmin$^{-2}$ before considering blending and masking, $n_{rm eff} approx31$ arcmin$^{-2}$ when rejecting seriously blended galaxies and $n_{rm eff} approx26$ arcmin$^{-2}$ when considering an additional 15% loss of galaxies due to masking. With future improvements in weak lensing algorithms, these values could be expected to increase by up to 20%. Throughout the paper, we also stress the ways in which $n_{rm eff}$ depends on our ability to understand and control systematic effects in the measurements.



rate research

Read More

The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image $sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $rsim27.5$, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than $sim10$ in the single short exposures, which propagates into a spurious shear correlation function at the $10^{-4}$--$10^{-3}$ level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
A joint analysis of the clustering of galaxies and their weak gravitational lensing signal is well-suited to simultaneously constrain the galaxy-halo connection as well as the cosmological parameters by breaking the degeneracy between galaxy bias and the amplitude of clustering signal. In a series of two papers, we perform such an analysis at the highest redshift ($zsim0.53$) in the literature using CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Eleventh Data Release (SDSS-III/BOSS DR11) catalog spanning 8300~deg$^2$. In this paper, we present details of the clustering and weak lensing measurements of these galaxies. We define a subsample of 400,916 CMASS galaxies based on their redshifts and stellar mass estimates so that the galaxies constitute an approximately volume-limited and similar population over the redshift range $0.47le zle 0.59$. We obtain a signal-to-noise ratio $S/Nsimeq 56$ for the galaxy clustering measurement. We also explore the redshift and stellar mass dependence of the clustering signal. For the weak lensing measurement, we use existing deeper imaging data from the CFHTLS with publicly available shape and photometric redshift catalogs from CFHTLenS, but only in a 105~deg$^2$ area which overlaps with BOSS. This restricts the lensing measurement to only 5,084 CMASS galaxies. After careful systematic tests, we find a highly significant detection of the CMASS weak lensing signal, with total $S/Nsimeq 26$. These measurements form the basis of the halo occupation distribution and cosmology analysis presented in More et al. (Paper II).
Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line-of-sight, and therefore changes with the orientation of the cluster. Studies suggest that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from `The Three Hundred Project to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and their embedded BCGs are aligned, with an average $sim$20 degree angle between their major axes. The bias in weak lensing cluster mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for relaxed clusters. We also test a 2-dimensional cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve weak-lensing mass estimates.
The LSST survey will provide unprecedented statistical power for measurements of dark energy. Consequently, controlling systematic uncertainties is becoming more important than ever. The LSST observing strategy will affect the statistical uncertainty and systematics control for many science cases; here, we focus on weak lensing systematics. The fact that the LSST observing strategy involves hundreds of visits to the same sky area provides new opportunities for systematics mitigation. We explore these opportunities by testing how different dithering strategies (pointing offsets and rotational angle of the camera in different exposures) affect additive weak lensing shear systematics on a baseline operational simulation, using the $rho-$statistics formalism. Some dithering strategies improve systematics control at the end of the survey by a factor of up to $sim 3-4$ better than others. We find that a random translational dithering strategy, applied with random rotational dithering at every filter change, is the most effective of those strategies tested in this work at averaging down systematics. Adopting this dithering algorithm, we explore the effect of varying the area of the survey footprint, exposure time, number of exposures in a visit, and exposure to the Galactic plane. We find that any change that increases the average number of exposures (in filters relevant to weak lensing) reduces the additive shear systematics. Some ways to achieve this increase may not be favorable for the weak lensing statistical constraining power or for other probes, and we explore the relative trade-offs between these options given constraints on the overall survey parameters.
We present the v1.0 release of CLMM, an open source Python library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a standalone toolkit of building blocks to enable end-to-end analysis pipeline validation for upcoming cluster cosmology analyses such as the ones that will be performed by the LSST-DESC. Its purpose is to serve as a flexible, easy-to-install and easy-to-use interface for both weak lensing simulators and observers and can be applied to real and mock data to study the systematics affecting weak lensing mass reconstruction. At the core of CLMM are routines to model the weak lensing shear signal given the underlying mass distribution of galaxy clusters and a set of data operations to prepare the corresponding data vectors. The theoretical predictions rely on existing software, used as backends in the code, that have been thoroughly tested and cross-checked. Combined, theoretical predictions and data can be used to constrain the mass distribution of galaxy clusters as demonstrated in a suite of example Jupyter Notebooks shipped with the software and also available in the extensive online documentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا