Do you want to publish a course? Click here

The XMM Deep survey in the CDFS V. Iron K lines from active galactic nuclei in the distant Universe

225   0   0.0 ( 0 )
 Added by Serena Falocco
 Publication date 2013
  fields Physics
and research's language is English
 Authors S. Falocco




Ask ChatGPT about the research

X-ray spectroscopy of active galactic nuclei (AGN) offers the opportunity to directly probe the inner regions of the accretion disk. We present the results of our analysis of average AGN XMM-Newton X-ray spectra in the Chandra Deep Field South observation (XMM CDFS). We computed the average spectrum of a sample of 54 AGN with spectroscopic redshifts and signal-to-noise ratio S/N > 15 in the 2-12 keV rest-frame band in at least one EPIC camera. We have taken the effects of combining spectra from sources at different redshifts and both EPIC cameras into account, as well as their spectral resolution; we checked our results using thorough simulations. We explored the Fe line components of distant AGN focusing on the narrow core which arises from regions far from the central engine and on the putative relativistic component (from the accretion disk). The average spectrum shows a highly significant Fe feature. Our model-independent estimates of the equivalent width (EW) suggest a higher EW in a broader range. The line, modelled as an unresolved Gaussian, is significant at 6.8 sigma and has an EW=95 eV (full sample). The current data can be fitted equally well adding a relativistic profile to the narrow component (in the full sample, EW=140 eV and 67 eV respectively for the relativistic and narrow lines). Thanks to the high quality of the XMM CDFS spectra and to the detailed modelling of the continuum and instrumental effects, we have shown that the most distant AGN exhibit a highly significant Fe emission feature. It can be modelled both with narrow and broad lines. We found tantalising evidence for reflection by material both very close and far away from the central engine. The EW of both features are similar to those observed in individual nearby AGN, hence they must be a widespread characteristic of AGN, since otherwise the average values would be smaller than observed.



rate research

Read More

The Chandra Deep Field South (CDF-S) was observed by XMM-Newton for a total of about 3 Ms in many periods over the past decade (2001-2002 and 2008-2009). The main goal of the survey was to obtain good quality X-ray spectroscopy of the AGN responsible for the bulk of the X-ray background. We will present the scientific highlights of the XMM-Newton survey and briefly discuss the perspectives of future observations to pursue XMM deep survey science with current and forthcoming X-ray facilities.
121 - Tahir Yaqoob 2006
We discuss some topical issues related to the Fe K emission lines in AGNs. We show remarkable agreement between non-contemporaneous ASCA and Chandra grating data and explain why there has been terrible confusion about the ASCA and post-ASCA results on the relativistic Fe K lines. We point out that in fact the number of sources (not the percentage) that have been reported to exhibit relativistic Fe K lines is now larger than it was in the ASCA era. Thus, the case for Constellation-X as a probe of strong gravity is even more compelling than it was a decade ago. One of the primary goals of these studies is to establish the foundation for future missions to map the spacetime metric around black holes. A prerequisite first step is to measure the black hole angular momentum in a robust manner that does not rely on assumptions about the accreting system. In addition, probing the Fe K lines out to high redshifts will pave the way for studying the accretion history and evolution of supermassive black holes. However, we point out some issues that need to be resolved, pertaining to the spin measurement and to the relativistic Fe K line emission found from AGN in deep surveys.
We analyze X-ray spectra of heavily obscured (N_H > 10^{24} cm^{-2}) active galaxies obtained with Chandra, concentrating on the iron K alpha fluorescence line. We measure very large equivalent widths in most cases, up to 5 keV in the most extreme example. The geometry of an obscuring torus of material near the active galactic nucleus (AGN) determines the Fe emission, which we model as a function of torus opening angle, viewing angle, and optical depth. The starburst/AGN composite galaxies in this sample require small opening angles. Starburst/AGN composite galaxies in general therefore present few direct lines of sight to their central engines. These composite galaxies are common, and their large covering fractions and heavy obscuration effectively hide their intrinsically bright X-ray continua. While few distant obscured AGNs have been identified, we propose to exploit their signature large Fe K alpha equivalent widths to find more examples in X-ray surveys.
The Chandra Deep Field is the region of the sky with the highest concentration of X-ray data available: 4Ms of Chandra and 3Ms of XMM data, allowing excellent quality spectra to be extracted even for faint sources. We take advantage of this in order to compile a sample of heavily obscured Active Galactic Nuclei (AGN) using X-ray spectroscopy. We select our sample among the 176 brightest XMM sources, searching for either a) flat X-ray spectra (Photon index<1.4 at the 90% confidence level) suggestive of a reflection dominated continuum or b) an absorption turn-over suggestive of a column density higher than ~10^{24} cm-2. We find a sample of nine candidate heavily obscured sources satisfying the above criteria. Four of these show statistically significant FeKalpha lines with large equivalent widths (three out of four have EW consistent with 1 keV) suggesting that these are the most secure Compton-thick AGN candidates. Two of these sources are transmission dominated while the other two are most probably reflection dominated Compton-thick AGN. Although this sample of four sources is by no means statistically complete, it represents the best example of Compton-thick sources found at moderate-to-high redshift with three sources at z=1.2-1.5 and one source at z=3.7. Using Spitzer and Herschel observations, we estimate with good accuracy the X-ray to mid-IR (12 micron) luminosity ratio of our sources. These are well below the average AGN relation, independently suggesting that these four sources are heavily obscured.
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10^43 ergs s^-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.1<z<0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ~8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6 sigma. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z>0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا