No Arabic abstract
A neutron detector based on EJ301 liquid scintillator has been employed at EAST to measure the neutron energy spectrum for D-D fusion plasma. The detector was carefully characterized in different quasi-monoenergetic neutron fields generated by a 4.5 MV Van de Graaff accelerator. In recent experimental campaigns, due to the low neutron yield at EAST, a new shielding device was designed and located as close as possible to the tokamak to enhance the count rate of the spectrometer. The fluence of neutrons and gamma-rays was measured with the liquid neutron spectrometer and was consistent with 3He proportional counter and NaI (Tl) gamma-ray spectrometer measurements. Plasma ion temperature values were deduced from the neutron spectrum in discharges with lower hybrid wave injection and ion cyclotron resonance heating. Scattered neutron spectra were simulated by the Monte Carlo transport Code, and they were well verified by the pulse height measurements at low energies.
Absolute measurements of neutron fluence are an essential prerequisite of neutron-induced cross section measurements, neutron beam lines characterization and dosimetric investigations. The H(n,p) elastic scattering cross section is a very well known standard used to perform precise neutron flux measurements in high precision measurements. The use of this technique, with proton recoil detectors, is not straightforward below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and to determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed with a reduced low energy background. A first test of this detector has been carried out at the AIFIRA facility, and first results will be presented.
A construction of a thermal neutron testing detector with a thin [ZnS(Ag)+$^6$LiF] scintillator is described. Results of an investigation of sources of the detector pulse origin and the pulse features in a ground and underground conditions are presented. Measurements of the scintillator own background, registration efficiency and a neutron flux at different objects of the BNO INR RAS were performed. The results are compared with the ones measured by the $^3$He proportional counter.
In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid scintillator with wavelenghth-shifting fibers which can be employed as a veto detector for cosmic muons background rejection. From the prototype study, it has been found that the detector has good performances and is capable of discriminating between muons induced signals and environmental radiation background. Its muons detection efficiency is greater than 98$%$, and on average, 58 photo-electrons (p.e.) are collected when a muon passes through the detector. To optimize the design and enhance the collection of light, the reflectivity of the coating materials has been studied in detail. A Monte Carlo simulation of the detector has been developed and compared to the performed measurements showing a good agreement between data and simulation results.
A large-area Multi-Pixel Photon Counter (MPPC) sensitive to vacuum ultra violet (VUV) light has been developed for the liquid xenon (LXe) scintillation detector of the MEG II experiment. The LXe detector is designed to detect the 52.8,MeV photon from the lepton flavour violating decay $mu^+ to mathrm{e}^+ gamma$ and is based on $900,ell$ LXe with a highly granular scintillation readout by 4092 VUV-MPPCs with an active area of $139,mathrm{mm}^2$ each, totalling $0.57,mathrm{m}^2$. The VUV-MPPC shows an excellent performance in LXe, which includes a high photon detection efficiency (PDE) up to 21% for the LXe scintillation light in the VUV range, a high gain, a low probability of the optical cross-talk and the after-pulsing, a low dark count rate and a good single photoelectron resolution. The large active area of the VUV-MPPC is formed by connecting four independent small VUV-MPPC chips in series to avoid the increase of the sensor capacitance and thus, to have a short pulse-decay-time, which is crucial for high rate experiments. Performance tests of 4180 VUV-MPPCs produced for the LXe detector were also carried out at room temperature prior to the installation to the detector and all of them with only a few exceptions were found to work properly. The design and performance of the VUV-MPPC are described in detail as well as the results from the performance tests at room temperature.
A novel algorithm for the discrimination of neutron and {gamma}-ray with wavelet transform modulus maximum (WTMM) in an organic scintillation has been investigated. Voltage pulses arising from a BC501A organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. The performances of most pulse shape discrimination methods in scintillation detection systems using time-domain features of the pulses are affected intensively by noise. However, the WTMM method using frequency-domain features exhibits a strong insensitivity to noise and can be used to discriminate neutron and {gamma}-ray events based on their different asymptotic decay trend between the positive modulus maximum curve and the negative modulus maximum curve in the scale-space plane. This technique has been verified by the corresponding mixed-field data assessed by the time-of-flight (TOF) method and the frequency gradient analysis (FGA) method. It is shown that the characterization of neutron and gamma achieved by the discrimination method based on WTMM is consistent with that afforded by TOF and better than FGA. Moreover, because the WTMM method is it self presented to eliminate the noise, there is no need to make any pretreatment for the pulses.