Do you want to publish a course? Click here

Gaussian Process for star and planet characterisation

416   0   0.0 ( 0 )
 Added by Camilla Danielski
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of exoplanetary atmospheres epitomises a continuous quest for higher accuracy measurements. Systematic effects and noise associated with both the stellar activity and the instrument can bias the results and thus limit the precision of the analysis. To reach a high photometric and spectroscopic precision, it is therefore essential to correct for these effects. We present here a novel non-parametric approach, named Gaussian Process method for Star Characterization (GPSC), to remove effects of stellar activity and instrumental systematics on planetary signals, with a view to preserve the atmospheric contribution which can be as small as 10$^{-4}$ or even 10$^{-5}$ the flux of the star. We applied our method to data recorded with Kepler, focussing on a sample of lightcurves with different effective temperatures and flux modulations. We found that GPSC can very effectively correct for the short and long term stellar activity and instrumental systematics. Additionally we run the GPSC on both real and simulated transit data, finding transit depths consistent with the original ones. Consequently we considered 10 hours of continuous observations: daily, every other day and weekly, and we used the GPSC to reconstruct the lightcurves. When data are recorded more frequently than once every five days we found that our approach is able to extrapolate the stellar flux at the 10$^{-4}$ level compared to the full stellar flux. These results show a great potential of GPSC to isolate the relevant astrophysical signal and achieve the precision needed for the correction of short and long term stellar activity.



rate research

Read More

New photometric space missions to detect and characterise transiting exoplanets are focusing on bright stars to obtain high cadence, high signal-to-noise light curves. Since these missions will be sensitive to stellar oscillations and granulation even for dwarf stars, they will be limited by stellar variability. We tested the performance of Gaussian process (GP) regression on the characterisation of transiting planets, and in particular to determine how many components of variability are necessary to describe high cadence, high signal-to-noise light curves expected from CHEOPS and PLATO. We found that the best GP stellar variability model contains four to five variability components: one stellar oscillation component, two to four granulation components, and/or one rotational modulation component. This high number of components is in contrast with the one-component GP model (1GP) commonly used in the literature for transit characterisation. Therefore, we compared the performance of the best multi-component GP model with the 1GP model in the derivation of transit parameters of simulated transits. We found that for Jupiter- and Neptune-size planets the best multi-component GP model is slightly better than the 1GP model, and much better than the non-GP model that gives biased results. For Earth-size planets, the 1GP model fails to retrieve the transit because it is a poor description of stellar activity. The non-GP model gives some biased results and the best multi-component GP is capable of retrieving the correct transit model parameters. We conclude that when characterising transiting exoplanets with high signal-to-noise ratios and high cadence light curves, we need models that couple the description of stellar variability with the transits analysis, like GPs. Moreover, for Earth-like exoplanets a better description of stellar variability improves the planetary characterisation.
Radial-velocity (RV) planet searches are often polluted by signals caused by gas motion at the stars surface. Stellar activity can mimic or mask changes in the RVs caused by orbiting planets, resulting in false positives or missed detections. Here we use Gaussian process (GP) regression to disentangle the contradictory reports of planets vs. rotation artifacts in Kapteyns star (Anglada-Escude et al. 2014, Robertson et al. 2015, Anglada-Escude et al. 2016). To model rotation, we use joint quasi-periodic kernels for the RV and H-alpha signals, requiring that their periods and correlation timescales be the same. We find that the rotation period of Kapteyns star is 125 days, while the characteristic active-region lifetime is 694 days. Adding a planet to the RV model produces a best-fit orbital period of 100~years, or 10 times the observing time baseline, indicating that the observed RVs are best explained by star rotation only. We also find no significant periodic signals in residual RV data sets constructed by subtracting off realizations of the best-fit rotation model and conclude that both previously reported planets are artifacts of the stars rotation and activity. Our results highlight the pitfalls of using sinusoids to model quasi-periodic rotation signals.
HIP 65426 b is a recently discovered exoplanet imaged during the course of the SPHERE-SHINE survey. Here we present new $L$ and $M$ observations of the planet from the NACO instrument at the VLT from the NACO-ISPY survey, as well as a new $Y-H$ spectrum and $K$-band photometry from SPHERE-SHINE. Using these data, we confirm the nature of the companion as a warm, dusty planet with a mid-L spectral type. From comparison of its SED with the BT-Settl atmospheric models, we derive a best-fit effective temperature of $T_{text{eff}}=1618pm7$ K, surface gravity $log g=3.78^{+0.04}_{-0.03}$ and radius $R=1.17pm0.04$ $R_{text{J}}$ (statistical uncertainties only). Using the DUSTY and COND isochrones we estimate a mass of $8pm1$ $M_{text{J}}$. Combining the astrometric measurements from our new datasets and from the literature, we show the first indications of orbital motion of the companion (2.6$sigma$ significance) and derive preliminary orbital constraints. We find a highly inclined orbit ($i=107^{+13}_{-10}$ deg) with an orbital period of $800^{+1200}_{-400}$ yr. We also report SPHERE sparse aperture masking observations that investigate the possibility that HIP 65426 b was scattered onto its current orbit by an additional companion at a smaller orbital separation. From this data we rule out the presence of brown dwarf companions with masses greater than 16 $M_{text{J}}$ at separations larger than 3 AU, significantly narrowing the parameter space for such a companion.
We present the results of a medium resolution optical spectroscopic survey of 92 cool ($3,000 lesssim T_{rm eff} lesssim 4,500,$K) southern TESS candidate planet hosts, and describe our spectral fitting methodology used to recover stellar parameters. We quantify model deficiencies at predicting optical fluxes, and while our technique works well for $T_{rm eff}$, further improvements are needed for [Fe/H]. To this end, we developed an updated photometric [Fe/H] calibration for isolated main sequence stars built upon a calibration sample of 69 cool dwarfs in binary systems, precise to $pm0.19,$dex, from super-solar to metal poor, over $1.51 < {rm Gaia}~(B_P-R_P) < 3.3$. Our fitted $T_{rm eff}$ and $R_star$ have median precisions of 0.8% and 1.7%, respectively and are consistent with our sample of standard stars. We use these to model the transit light curves and determine exoplanet radii for 100 candidate planets to 3.5% precision and see evidence that the planet-radius gap is also present for cool dwarfs. Our results are consistent with the sample of confirmed TESS planets, with this survey representing one of the largest uniform analyses of cool TESS candidate planet hosts to date.
77 - Felipe O. Alves 2020
While it is widely accepted that planets are formed in protoplanetary disks, there is still much debate on when this process happens. In a few cases protoplanets have been directly imaged, but for the vast majority of systems, disk gaps and cavities -- seen especially in dust continuum observations -- have been the strongest evidence of recent or on-going planet formation. We present ALMA observations of a nearly edge-on ($i = 75^{circ}$) disk containing a giant gap seen in dust but not in $^{12}$CO gas. Inside the gap, the molecular gas has a warm (100 K) component coinciding in position with a tentative free-free emission excess observed with the VLA. Using 1D hydrodynamic models, we find the structure of the gap is consistent with being carved by a planet with 4-70 $M_{rm Jup}$. The coincidence of free-free emission inside the planet-carved gap points to the planet being very young and/or still accreting. In addition, the $^{12}$CO observations reveal low-velocity large scale filaments aligned with the disk major axis and velocity coherent with the disk gas that we interpret as ongoing gas infall from the local ISM. This system appears to be an interesting case where both a star (from the environment and the disk) and a planet (from the disk) are growing in tandem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا