Do you want to publish a course? Click here

Fermi surface in KFe2As2 determined via de Haas-van Alphen oscillation measurements

239   0   0.0 ( 0 )
 Added by Taichi Terashima
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have completely determined the Fermi surface in KFe$_2$As$_2$ via de Haas-van Alphen (dHvA) measurements. Fundamental frequencies $epsilon$, $alpha$, $zeta$, and $beta$ are observed in KFe$_2$As$_2$. The first one is attributed to a hole cylinder near the X point of the Brillouin zone, while the others to hole cylinders at the $Gamma$ point. We also observe magnetic breakdown frequencies between $alpha$ and $zeta$ and suggest a plausible explanation for them. The experimental frequencies show deviations from frequencies predicted by band structure calculations. Large effective masses up to 19 $m_e$ for $B parallel c$ have been found, $m_e$ being the free electron mass. The carrier number and Sommerfeld coefficient of the specific heat are estimated to be 1.01 -- 1.03 holes per formula unit and 82 -- 94 mJmol$^{-1}$K$^{-2}$, respectively, which are consistent with the chemical stoichiometry and a direct measure of 93 mJmol$^{-1}$K$^{-2}$ [H. Fukazawa textit{et al}., J. Phys. Soc. Jpn. textbf{80SA}, SA118 (2011)]. The Sommerfeld coefficient is about 9 times enhanced over a band value, suggesting the importance of low-energy spin and/or orbital fluctuations, and places KFe$_2$As$_2$ among strongly correlated metals. We have also performed dHvA measurements on Ba$_{0.07}$K$_{0.93}$Fe$_2$As$_2$ and have observed the $alpha$ and $beta$ frequencies.



rate research

Read More

We report on a band structure calculation and de Haas-van Alphen measurements of KFe$_2$As$_2$. Three cylindrical Fermi surfaces are found. Effective masses of electrons range from 6 to 18$m_e$, $m_e$ being the free electron mass. Remarkable discrepancies between the calculated and observed Fermi surface areas and the large mass enhancement ($gtrsim 3$) highlight the importance of electronic correlations in determining the electronic structures of iron pnicitide superconductors.
We have observed Shubnikov-de Haas oscillations in FeSe. The Fermi surface deviates significantly from predictions of band-structure calculations and most likely consists of one electron and one hole thin cylinder. The carrier density is in the order of 0.01 carriers/ Fe, an order-of-magnitude smaller than predicted. Effective Fermi energies as small as 3.6 meV are estimated. These findings call for elaborate theoretical investigations incorporating both electronic correlations and orbital ordering.
We show that the Fermi surface (FS) in the antiferromagnetic phase of BaFe$_2$As$_2$ is composed of one hole and two electron pockets, all of which are three dimensional and closed, in sharp contrast to the FS observed by angle-resolved photoemission spectroscopy. Considerations on the carrier compensation and Sommerfeld coefficient rule out existence of unobserved FS pockets of significant sizes. A standard band structure calculation reasonably accounts for the observed FS, despite the overestimated ordered moment. The mass enhancement, the ratio of the effective mass to the band mass, is 2--3.
155 - G. Li , B. S. Conner , S. Weyeneth 2010
Here, we present a de Haas-van Alphen (dHvA) effect1 study on the newly discovered LaFeAsO1-xFx compounds2,3 in order to unveil the topography of the Fermi surface associated with their antiferromagnetic and superconducting phases, which is essential for understanding their magnetism, pairing symmetry and superconducting mechanism. Calculations 4 and surface-sensitive measurements 5,6,7 provided early guidance, but lead to contradictory results, generating a need for a direct experimental probe of their bulk Fermi surface. In antiferromagnetic LaFeAsO1-xFx 8,9 we observe a complex pattern in the Fourier spectrum of the oscillatory component superimposed onto the magnetic torque signal revealing a reconstructed Fermi surface, whose geometry is not fully described by band structure calculations. Surprisingly, several of the same frequencies, or Fermi surface cross-sectional areas, are also observed in superconducting LaFeAsO1-xFx (with a superconducting transition temperature Tc ~ 15 K). Although one could attribute this to inhomogeneous F doping, the corresponding effective masses are largely enhanced with respect to those of the antiferromagnetic compound. Instead, this implies the microscopic coexistence of superconductivity and antiferromagnetism on the same Fermi surface in the underdoped region of the phase diagram of the LaFeAsO1-xFx series. Thus, the dHvA-effect reveals a more complex Fermi surface topography than that predicted by band structure calculations4 upon which the currently proposed superconducting pairing scenarios10,11,12,13 are based, which could be at the origin of their higher Tcs when compared to their phosphide analogs.
The three-dimensional Fermi surface morphology of superconducting BaFe_2(As_0.37}P_0.63)_2 with T_c=9K, is determined using the de Haas-van Alphen effect (dHvA). The inner electron pocket has a similar area and k_z interplane warping to the observed hole pocket, revealing that the Fermi surfaces are geometrically well nested in the (pi,pi) direction. These results are in stark contrast to the Fermiology of the non-superconducting phosphides (x=1), and therefore suggests an important role for nesting in pnictide superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا