No Arabic abstract
In this paper we investigate the nature of 27 star cluster candidates, most of them projected towards the Galactic anticentre. We derive fundamental parameters for 20 confirmed clusters, among these 7 are new identifications. Four of the remaining are uncertain cases that require deeper photometry to establish their nature, and 4 are probably field fluctuations. In addition, we provide a partial census of the open clusters towards the Galactic anticentre. We also include in this study some interesting objects outside the anticentre region, in the second and third Galactic quadrants, mainly in the Perseus and Outer arms. These clusters confirm the extension of the Outer arm along the third quadrant. We also point out that the embedded cluster FSR 486, at a distance of 7.2 +/- 1.3 kpc from de Sun, is projected on the line of sight of the Local Group irregular dwarf galaxy IC 10. Thus, part of the unusual properties of IC 10 may be explained by a Galactic contamination. We point out the importance of embedded clusters in tracing the spiral structure.
In the present work we investigate the properties of 18 embedded clusters (ECs). The sample includes 11 previously known clusters and we report the discovery of 7 ECs on WISE images, thus complementing our recent list of 437 new clusters. The main goal is to use such clusters to shed new light on the Galactic structure by tracing the spiral arms with cluster distances. Our results favour a four-armed spiral pattern tracing three arms, Sagitarius-Carina, Perseus, and the Outer arm. The Sagitarius-Carina spiral arm is probed in the borderline of the third and fourth quadrants at a distance from the Galactic centre of $d_1sim6.4$ kpc adopting $R_{odot}=7.2$ kpc, or $d_2sim7.2$ kpc for $R_{odot}=8.0$ kpc. Most ECs in our sample are located in the Perseus arm that is traced in the second and third quadrants and appear to be at Galactocentric distances in the range $d_1=9-10.5$ kpc or $d_2=9.8-11.3$ kpc. Dolidze 25, Bochum 2, and Camargo 445 are located in the Outer arm that extends along the second and third Galactic quadrants with a distance from the Galactic centre in the range of $d_1=12.5-14.5$ kpc or $d_2=13.5-15.5$ kpc. We find further evidence that in the Galaxy ECs are predominantly located within the thin disc and along spiral arms. They are excellent tools for tracing these Galactic features and therefore new searches for ECs can contribute to a better understanding of the Galactic structure. We also report an EC aggregate located in the Perseus arm.
Open clusters are unique tracers of the history of our own Galaxys disk. According to our membership analysis based on textit{Gaia} astrometry, out of the 226 potential clusters falling in the footprint of GALAH or APOGEE, we find that 205 have secure members that were observed by at least one of the survey. Furthermore, members of 134 clusters have high-quality spectroscopic data that we use to determine their chemical composition. We leverage this information to study the chemical distribution throughout the Galactic disk of 21 elements, from C to Eu. The radial metallicity gradient obtained from our analysis is $-$0.076$pm$0.009 dex kpc$^{-1}$, which is in agreement with previous works based on smaller samples. Furthermore, the gradient in the [Fe/H] - guiding radius (r$_{rm guid}$) plane is $-$0.073$pm$0.008 dex kpc$^{-1}$. We show consistently that open clusters trace the distribution of chemical elements throughout the Galactic disk differently than field stars. In particular, at given radius, open clusters show an age-metallicity relation that has less scatter than field stars. As such scatter is often interpreted as an effect of radial migration, we suggest that these differences are due to the physical selection effect imposed by our Galaxy: clusters that would have migrated significantly also had higher chances to get destroyed. Finally, our results reveal trends in the [X/Fe]$-$r$_{rm guid}$$-$age space, which are important to understand production rates of different elements as a function of space and time.
By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21~cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.
We report measurements of parallax and proper motion for four 22 GHz water maser sources as part of VERA Outer Rotation Curve project. All sources show Galactic latitudes of $>$ 2$^{circ}$ and Galactocentric distances of $>$ 11 kpc at the Galactic longitude range of 95$^{circ}$ $< l <$ 126$^{circ}$. The sources trace the Galactic warp reaching to 200$sim$400 pc, and indicate the signature of the warp to 600 pc toward the north Galactic pole. The new results along with previous results in the literature show the maximum height of the Galactic warp is increased with Galactocentric distance. Also, we examined velocities perpendicular to the disk for the sample, and found an oscillatory behavior between the vertical velocities and Galactic heights. This behavior suggests the existence of the bending (vertical density) waves, possibly induced by a perturbing satellite (e.g. passage of the Sagittarius dwarf galaxy).
New photometric material is presented for 6 outer disk supposedly old, Galact ic star clusters: Berkeley 76, Haffner 4, Ruprecht 10, Haffner 7, Haffner 11, and Haffner 15, that are projected against the rich and complex Canis Major overde nsity at $225^o leq l leq 248^o $, $-7^o leq b leq -2^o$. This CCD data-set, in the UBVI pass-bands, is used to derive their fundamental parameters, in particular age and distance. Four of the program clusters turn out to be older than 1 Gyr. This fact makes them ideal targets for future spectroscopic campaigns aiming at deriving their metal abundances. This, in turn, contributes to increase the number of well-studied outer disk o ld open clusters. Only Haffner 15, previously considered an old cluster, is found to be a young, significantly reddened cluster, member of the Perseus arm in the third Galactic quadrant. As for Haffner~4, we suggest an age of about half a Gyr. The most interesting result we found is that Berkeley~76 is probably located at more than 17 kpc from the Galactic center, and therefore is among the most peripherical old open clusters so far detected. Besides, for Ruprecht~10 and Haffner~7, which were never studied before, we pr opose ages larger than 1 Gyr. All the old clusters of this sample are scarcely populated and show evidence o f tidal interaction with the Milky Way, and are therefore most probably in advanced st ages of dynamical dissolution.