Do you want to publish a course? Click here

Regulation of dispersion of carbon nanotubes in a mixture of good and bad solvents

189   0   0.0 ( 0 )
 Added by Nikolai Lebovka I
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The microstructure and electrical conductivity of suspensions of multi-walled carbon nanotubes (MWCNTs) in binary liquid mixtures water-1-Cyclohexyl-2-pyrrolidone (CHP) were studied in the heating and cooling cycles. The concentration of MWCNTs was varied in the interval between 0-1 wt.% and the content of water in a binary mixture X = [water]/([CHP]+[water]) was varied within 0-1.0. The experimental data have shown that dispersing quality of MWCNTs in a mixture of good (CHP) and bad (water) solvents may be finely regulated by adjustment of composition of the CHP+ water mixtures. The aggregation ability of MWCNTs in dependence on X was discussed. The surface of MWCNT clusters was highly tortuous, its fractal dimension df increased with increase of X, approaching -> 1.9 at X->1. It was concluded that the surface tension is not suitable characteristic for prediction of dispersion ability in the mixture of good and bad solvents. The electrical conductivity data evidenced the presence of a fuzzy-type percolation with multiple thresholds in the systems under investigation. This behavior was explained by formation of different percolation networks in dependence of MWCNT concentration.



rate research

Read More

We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in non-polar organic solvents. The active conjugated groups, which are highly attracted to graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and crosslinked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that pyrene-siloxane surfactant is very effective in dispersing multi-wall nanotubes, while the porphyrin-siloxane is making single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.
We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant $sigma$-$pi$ hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.
123 - K. Sasaki , J. Jiang , R. Saito 2006
We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable transition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are developed locally at both ends of the nanotube and a normal metal exists in the middle. In this case, a signal of the edge state superconductivity appears as the Josephson current which is sensitive to the length of a nanotube and the position of the Fermi energy. Such a dependence distinguishs edge state superconductivity from bulk superconductivity.
79 - B.J. LeRoy , S.G. Lemay , J. Kong 2005
The interplay between discrete vibrational and electronic degrees of freedom directly influences the chemical and physical properties of molecular systems. This coupling is typically studied through optical methods such as fluorescence, absorption, and Raman spectroscopy. Molecular electronic devices provide new opportunities for exploring vibration-electronic interactions at the single molecule level. For example, electrons injected from a scanning tunneling microscope tip into a metal can excite vibrational excitations of a molecule in the gap between tip and metal. Here we show how current directly injected into a freely suspended individual single-wall carbon nanotube can be used to excite, detect, and control a specific vibrational mode of the molecule. Electrons inelastically tunneling into the nanotube cause a non-equilibrium occupation of the radial breathing mode, leading to both stimulated emission and absorption of phonons by successive electron tunneling events. We exploit this effect to measure a phonon lifetime on the order of 10 nanoseconds, corresponding to a quality factor well over 10000 for this nanomechanical oscillator.
Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge conductivity and lattice thermal conductivity using the atomistic Green function approach. The electron and phonon transmissions are analyzed as a function of the length of the disordered nanostructures. The thermal conductance as a function of temperature is calculated for different lengths. Analysis of the transmission probabilities as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا