No Arabic abstract
Environmental influences on the dynamics of a coupled qubit-oscillator system are studied analytically. We investigate the case of a quasi-degenerate qubit within the ultra-strong coupling regime for which the qubit frequency is much smaller than the frequency of the oscillator, and the coupling between the qubit and the oscillator is large, both of which invalidate the usually employed rotating wave approximation. In contrast to the standard quantum optics master equation, we explicitly take the qubit-oscillator coupling into account while microscopically deriving a dressed state master equation. Using the derived master equation, we discuss a spectroscopic technique which can be used to probe the dressed energy level structure of the qubit-oscillator system.
The Tavis-Cummings model for more than one qubit interacting with a common oscillator mode is extended beyond the rotating wave approximation (RWA). We explore the parameter regime in which the frequencies of the qubits are much smaller than the oscillator frequency and the coupling strength is allowed to be ultra-strong. The application of the adiabatic approximation, introduced by Irish, et al. (Phys. Rev. B textbf{72}, 195410 (2005)), for a single qubit system is extended to the multi-qubit case. For a two-qubit system, we identify three-state manifolds of close-lying dressed energy levels and obtain results for the dynamics of intra-manifold transitions that are incompatible with results from the familiar regime of the RWA. We exhibit features of two-qubit dynamics that are different from the single qubit case, including calculations of qubit-qubit entanglement. Both number state and coherent state preparations are considered, and we derive analytical formulas that simplify the interpretation of numerical calculations. Expressions for individual collapse and revival signals of both population and entanglement are derived.
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal value of the variational parameter is determined by minimizing the energy function of the ground state. Comparing with numerical exact results, we show that our method evidently improves the accuracy of the conventional GRWA in calculating fundamental physical quantities, such as energy spectra, mean photon number, and dynamics. Interestingly, the accuracy of our method allows us to reproduce the asymptotic behavior of mean photon number in large frequency ratio for the ground state and investigate the quasi-periodical structure of the time evolution, which are incapable of being predicted by the GRWA. The applicable parameter ranges cover the ultrastrong coupling regime, which will be helpful to recent experiments.
We present the analytical solution of the Tavis-Cummings (TC) model for more than one qubit inhomogeneously coupled to a single mode radiation field beyond the rotating-wave approximation (RWA). The significant advantage of the displaced oscillator basis enables us to apply the same truncation techniques adopted in the single qubit Jaynes-Cummings (JC) model to the multiple qubits system. The derived analytical spectrum match perfectly the exact diagonalization numerical solutions of the inhomogeneous TC model in the parameter regime where the qubits transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultra-strong coupling regime. The two-qubit TC model is quasi-exactly solvable because part of the spectra can be determined exactly in the homogeneous coupling case with two identical qubits or with symmetric(asymmetric) detuning. By means of the fidelity of quantum states we identify several nontrivial level crossing points in the same parity subspace, which implies that homogeneous coupled two-qubit TC model with $omega_1=omega_2$ or $omega_1pmomega_2=2omega_c$ is integrable. We further explore the time evolution of the qubits population inversion and the entanglement behavior taking two qubits as an example. The analytical methods provide unexpectedly accurate results in describing the dynamics of the qubit in the present experimentally accessible coupling regime, showing that the collapse-revival phenomena emerge, survive, and are finally destroyed when the coupling strength increases beyond the ultra-strong coupling regime. The suggested procedure applies readily to the multiple qubits system such as the GHZ state entanglement evolution and quantum entanglement between a single photon and superconducting qubits of particular experiment interest.
We study the dynamics of two qubits interacting with a single mode of a harmonic oscillator beyond the rotating wave approximation in the ideally degenerate regime. Exact analytic expressions are obtained for state properties of interest, including qubit entanglement for a certain class of initial states of the oscillator and the qubits. Qualitative differences and similarities in the evolution of the qubits in the degenerate regime when the oscillator is treated quantum mechanically and classically are discussed.
Here we use perturbation techniques based on the averaging method to investigate Rabi oscillations in cw and pulse-driven two-level systems (TLSs). By going beyond the rotating-wave approximation, especifically to second-order in perturbation, we obtain the Bloch-Siegert shift of the TLS resonant frequency, in which the resonant frequency increases with the driving field amplitude. This frequency shift implies that short resonant $pi$-pulses in which the Rabi frequency is approximately 40% or higher of the transition frequency do not achieve complete inversion in TLSs. Hence, guided by analytical results based on the averaging technique, we propose two methods for obtaining population