Do you want to publish a course? Click here

Small-Bias Sets for Nonabelian Groups: Derandomizing the Alon-Roichman Theorem

151   0   0.0 ( 0 )
 Added by Cristopher Moore
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

In analogy with epsilon-biased sets over Z_2^n, we construct explicit epsilon-biased sets over nonabelian finite groups G. That is, we find sets S subset G such that | Exp_{x in S} rho(x)| <= epsilon for any nontrivial irreducible representation rho. Equivalently, such sets make Gs Cayley graph an expander with eigenvalue |lambda| <= epsilon. The Alon-Roichman theorem shows that random sets of size O(log |G| / epsilon^2) suffice. For groups of the form G = G_1 x ... x G_n, our construction has size poly(max_i |G_i|, n, epsilon^{-1}), and we show that a set S subset G^n considered by Meka and Zuckerman that fools read-once branching programs over G is also epsilon-biased in this sense. For solvable groups whose abelian quotients have constant exponent, we obtain epsilon-biased sets of size (log |G|)^{1+o(1)} poly(epsilon^{-1}). Our techniques include derandomized squaring (in both the matrix product and tensor product senses) and a Chernoff-like bound on the expected norm of the product of independently random operators that may be of independent interest.



rate research

Read More

Hegyvari and Hennecart showed that if $B$ is a sufficiently large brick of a Heisenberg group, then the product set $Bcdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra special groups as well as to a large family of quasigroups.
255 - Hans U. Simon 2017
It is well known that the containment problem (as well as the equivalence problem) for semilinear sets is $log$-complete in $Pi_2^p$. It had been shown quite recently that already the containment problem for multi-dimensional linear sets is $log$-complete in $Pi_2^p$ (where hardness even holds for a unary encoding of the numerical input parameters). In this paper, we show that already the containment problem for $1$-dimensional linear sets (with binary encoding of the numerical input parameters) is $log$-hard (and therefore also $log$-complete) in $Pi_2^p$. However, combining both restrictions (dimension $1$ and unary encoding), the problem becomes solvable in polynomial time.
We present a (full) derandomization of HSSW algorithm for 3-SAT, proposed by Hofmeister, Schoning, Schuler, and Watanabe in [STACS02]. Thereby, we obtain an O(1.3303^n)-time deterministic algorithm for 3-SAT, which is currently fastest.
Difference sets have been studied for more than 80 years. Techniques from algebraic number theory, group theory, finite geometry, and digital communications engineering have been used to establish constructive and nonexistence results. We provide a new theoretical approach which dramatically expands the class of $2$-groups known to contain a difference set, by refining the concept of covering extended building sets introduced by Davis and Jedwab in 1997. We then describe how product constructions and other methods can be used to construct difference sets in some of the remaining $2$-groups. We announce the completion of ten years of collaborative work to determine precisely which of the 56,092 nonisomorphic groups of order 256 contain a difference set. All groups of order 256 not excluded by the two classical nonexistence criteria are found to contain a difference set, in agreement with previous findings for groups of order 4, 16, and 64. We provide suggestions for how the existence question for difference sets in $2$-groups of all orders might be resolved.
79 - Joshua A. Grochow 2016
Mahaneys Theorem states that, assuming $mathsf{P} eq mathsf{NP}$, no NP-hard set can have a polynomially bounded number of yes-instances at each input length. We give an exposition of a very simple unpublished proof of Manindra Agrawal whose ideas appear in Agrawal-Arvind (Geometric sets of low information content, Theoret. Comp. Sci., 1996). This proof is so simple that it can easily be taught to undergraduates or a general graduate CS audience - not just theorists! - in about 10 minutes, which the author has done successfully several times. We also include applications of Mahaneys Theorem to fundamental questions that bright undergraduates would ask which could be used to fill the remaining hour of a lecture, as well as an application (due to Ikenmeyer, Mulmuley, and Walter, arXiv:1507.02955) to the representation theory of the symmetric group and the Geometric Complexity Theory Program. To this author, the fact that sparsity results on NP-complete sets have an application to classical questions in representation theory says that they are not only a gem of classical theoretical computer science, but indeed a gem of mathematics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا