No Arabic abstract
Three lines of evidence indicate that in the most common type of core collapse supernovae, the energy deposited in the ejecta by the exploding core is approximately proportional to the progenitor mass cubed. This results stems from an observed uniformity of light curve plateau duration, a correlation between mass and ejecta velocity, and the known correlation between luminosity and velocity. This result ties in analytical and numerical models together with observations, providing us with clues as to the mechanism via which the explosion of the core deposits a small fraction of its energy into the hurled envelope.
Here we present the results from two sets of simulations, in two and three spatial dimensions. In two dimensions, the simulations include multifrequency flux-limited diffusion neutrino transport in the ray-by-ray-plus approximation, two-dimensional self gravity in the Newtonian limit, and nuclear burning through a 14-isotope alpha network. The three-dimensional simulations are model simulations constructed to reflect the post stellar core bounce conditions during neutrino shock reheating at the onset of explosion. They are hydrodynamics-only models that focus on critical aspects of the shock stability and dynamics and their impact on the supernova mechanism and explosion. In two dimensions, we obtain explosions (although in one case weak) for two progenitors (11 and 15 Solar mass models). Moreover, in both cases the explosion is initiated when the inner edge of the oxygen layer accretes through the shock. Thus, the shock is not revived while in the iron core, as previously discussed in the literature. The three-dimensional studies of the development of the stationary accretion shock instability (SASI) demonstrate the fundamentally new dynamics allowed when simulations are performed in three spatial dimensions. The predominant l=1 SASI mode gives way to a stable m=1 mode, which in turn has significant ramifications for the distribution of angular momentum in the region between the shock and proto-neutron star and, ultimately, for the spin of the remnant neutron star. Moreover, the three-dimensional simulations make clear, given the increased number of degrees of freedom, that two-dimensional models are severely limited by artificially imposed symmetries.
In these proceedings, we summarize recent results from our SINS VLT/SINFONI integral-field survey, focusing on the 52 detected UV/optically-selected star-forming galaxies at z~2. Our H-alpha emission-line imaging and kinematic data of these systems illustrates that a substantial fraction (> 1/3) of these galaxies are large, rotating disks and that these disks are clumpy, thick, and forming stars rapidly. We compare these systems to local disk scaling relations and find that the backbones of these relations are already in place at z~2. Detailed analysis of the large disks in our sample provides strong evidence that this population cannot result from a merger-dominated formation history and instead must be assembled by the smooth but rapid inflow of gas along filaments. These systems will then secularly evolve from clump-dominated disks to bulge-dominated disks on short timescales, a phenomenon that is observed in our SINS observations and is consistent with predictions from numerical simulations. These results provide new and exciting insights into the formation of bulge-dominated galaxies in the local Universe.
Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic core-collapse supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars
The explosion energy and the ejecta mass of a type IIP supernova make up the basis for the theory of explosion mechanism. So far, these parameters have only been determined for seven events. Type IIP supernova 2008in is another well-observed event for which a detailed hydrodynamic modeling can be used to derive the supernova parameters. Hydrodynamic modeling was employed to describe the bolometric light curve and the expansion velocities at the photosphere level. A time-dependent model for hydrogen ionization and excitation was applied to model the Halpha and Hbeta line profiles. We found an ejecta mass of 13.6 Msun, an explosion energy of 5.05x10^50 erg, a presupernova radius of 570 Rsun, and a radioactive Ni-56 mass of 0.015 Msun. The estimated progenitor mass is 15.5 Msun. We uncovered a problem of the Halpha and Hbeta description at the early phase, which cannot be resolved within a spherically symmetric model. The presupernova of SN 2008in was a normal red supergiant with the minimum mass of the progenitor among eight type IIP supernovae explored by means of the hydrodynamic modeling. The problem of the absence of type IIP supernovae with the progenitor masses <15 Msun in this sample remains open.
Mapping supernovae to their progenitors is fundamental to understanding the collapse of massive stars. We investigate the red supergiant problem, which concerns why red supergiants with masses $sim16$-$30 M_odot$ have not been identified as progenitors of Type IIP supernovae, and the supernova rate problem, which concerns why the observed cosmic supernova rate is smaller than the observed cosmic star formation rate. We find key physics to solving these in the compactness parameter, which characterizes the density structure of the progenitor. If massive stars with compactness above $xi_{2.5} sim 0.2$ fail to produce canonical supernovae, (i) stars in the mass range $16$-$30 M_odot$ populate an island of stars that have high $xi_{2.5}$ and do not produce canonical supernovae, and (ii) the fraction of such stars is consistent with the missing fraction of supernovae relative to star formation. We support this scenario with a series of two- and three-dimensional radiation hydrodynamics core-collapse simulations. Using more than 300 progenitors covering initial masses $10.8$-$75 M_odot$ and three initial metallicities, we show that high compactness is conducive to failed explosions. We then argue that a critical compactness of $sim 0.2$ as the divide between successful and failed explosions is consistent with state-of-the-art three-dimensional core-collapse simulations. Our study implies that numerical simulations of core collapse need not produce robust explosions in a significant fraction of compact massive star initial conditions.