Magnetic coupling of porphyrin molecules through graphene


Abstract in English

Graphene is expected to complement todays Si-based information technology. In particular, magnetic molecules in contact with graphene constitute a tantalizing approach towards organic spin electronics because of the reduced conductivity mismatch at the interface. In such a system a bit is represented by a single molecular magnetic moment, which must be stabilized against thermal fluctuations. Here, we show in a combined experimental and theoretical study that the moments of paramagnetic Co-octaethylporphyrin (CoOEP) molecules on graphene can be aligned by a remarkable antiferromagnetic coupling to a Ni substrate underneath the graphene. This coupling is mediated via the pi electronic system of graphene, while no covalent bonds between the molecule and the substrate are established.

Download