Recent interest in spectroscopic factors for single-neutron transfer in low-spin states of the even-odd Xenon $^{125,127,129.131}$Xe and even-odd Tellurium, $^{123,125,127,129,131}$Te isotopes stimulated us to study these isotopes within the frame work of the Interacting Boson-Fermion Model. The fermion that is coupled to the system of bosons is taken to be in the positive parity $3s_{1/2}$, $2d_{3/2}$, $2d_{5/2}$, $1g_{7/2}$ and in the negative $1h_{11/2}$ single-particle orbits, the complete 50-82 major shell. The calculated energies of low-spin energy levels of the odd isotopes are found to agree well with the experimental data. Also B(E2), B(M1) values and spectroscopic factors for single-neutron transfer are calculated and compared with experimental data.