Do you want to publish a course? Click here

Optical and X-ray Properties of CAL 83: I. Quasi-periodic Optical and Supersoft Variability

206   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the long-term (~ years) temporal variability of the prototype supersoft X-ray source (SSS) CAL 83 in the LMC, using data from the MACHO and OGLE projects. The CAL 83 light curve exhibits dramatic brightness changes of ~1 mag on timescales of ~450 days, and spends typically ~200 days in the optical low state. Combined with archival XMM-Newton X-ray observations these represent the most extensive X-ray/optical study to date of this system, and reveal in much greater detail that the X-ray light curve is anti-correlated with the optical behaviour. This is remarkably similar to the behaviour of the transient SSS, RX J0513.9-6951, where the SSS outbursts recur on a timescale of ~168 days, and also anti-correlate with the optical flux. We performed simple blackbody fits to both high and low state X-ray spectra, and find that the blackbody temperature and luminosity decrease when the optical counterpart brightens. We interpret these long-term variations in terms of the limit-cycle model of Hachisu & Kato (2003a), which provides further support for these systems containing massive (~1.3 Msun) white dwarfs. In addition, we have refined their orbital periods in the MACHO and OGLE-III light curves to values of 1.047529(1) days and 0.762956(5) days for CAL 83 and RX J0513.9-6951, respectively.



rate research

Read More

A new ephemeris has been determined for the supersoft X-ray binary CAL 83 using MACHO photometry. With an improved orbital period of 1.047568 days, it is now possible to phase together photometric and spectroscopic data obtained over the past two decades with new far ultraviolet spectra taken with FUSE. We discuss the properties of the orbital and longterm optical light curves as well as the colors of CAL 83. In the far ultraviolet the only well-detected stellar feature is emission from the O VI resonance doublet. The radial velocity of this emission appears to differ from that of HeII in the optical region, although we only have partial phase coverage for the O VI line. The FUSE continuum variations are similar to the optical light curve in phase and amplitude.
114 - E. Bon , P. Marziani , N. Bon 2017
Here we present the evidence for periodicity of an optical emission detected in several AGN. Significant periodicity is found in light curves and radial velocity curves. We discuss possible mechanisms that could produce such periodic variability and their implications. The results are consistent with possible detection of the orbital motion in proximity of the AGN central supermassive black holes.
Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results. We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9/24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe on average a larger soft X-ray spectral component not observed in non accreting stars.
Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 sec resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~ 40% in the bremsstrahlung (0.5-10 keV) X-ray emission and ~ 20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~ (5-10) g.cm-2.s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model.
We present results of a 3-month combined X-ray/UV/optical monitoring campaign of the Seyfert 1 galaxy NGC 6814. The object was monitored by Swift from June through August 2012 in the X-ray and UV bands and by the Liverpool Telescope from May through July 2012 in B and V. The light curves are variable and significantly correlated between wavebands. Using cross-correlation analysis, we compute the time lag between the X-ray and lower energy bands. These lags are thought to be associated with the light travel time between the central X-ray emitting region and areas further out on the accretion disc. The computed lags support a thermal reprocessing scenario in which X-ray photons heat the disc and are reprocessed into lower energy photons. Additionally, we fit the lightcurves using CREAM, a Markov Chain Monte Carlo code for a standard disc. The best-fitting standard disc model yields unreasonably high super-Eddington accretion rates. Assuming more reasonable accretion rates would result in significantly under-predicted lags. If the majority of the reprocessing originates in the disc, then this implies the UV/optical emitting regions of the accretion disc are farther out than predicted by the standard thin disc model. Accounting for contributions from broad emission lines reduces the lags in B and V by approximately 25% (less than the uncertainty in the lag measurements), though additional contamination from the Balmer continuum may also contribute to the larger than expected lags. This discrepancy between the predicted and measured interband delays is now becoming common in AGN where wavelength-dependent lags are measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا