Do you want to publish a course? Click here

Electric Field Tuning of the Surface Band Structure of Topological Insulator Sb2Te3 Thin Films

275   0   0.0 ( 0 )
 Added by Joseph Stroscio
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measured the response of the surface state spectrum of epitaxial Sb2Te3 thin films to applied gate electric fields by low temperature scanning tunneling microscopy. The gate dependent shift of the Fermi level and the screening effect from bulk carriers vary as a function of film thickness. We observed a gap opening at the Dirac point for films thinner than four quintuple layers, due to the coupling of the top and bottom surfaces. Moreover, the top surface state band gap of the three quintuple layer films was found to be tunable by back gate, indicating the possibility of observing a topological phase transition in this system. Our results are well explained by an effective model of 3D topological insulator thin films with structure inversion asymmetry, indicating that three quintuple layer Sb2Te3 films are topologically nontrivial and belong to the quantum spin Hall insulator class.



rate research

Read More

140 - C. J. Lin , X. Y. He , J. Liao 2013
We report that the finite thickness of three-dimensional topological insulator (TI) thin films produces an observable magnetoresistance (MR) in phase coherent transport in parallel magnetic fields. The MR data of Bi2Se3 and (Bi,Sb)2Te3 thin films are compared with existing theoretical models of parallel field magnetotransport. We conclude that the TI thin films bring parallel field transport into a unique regime in which the coupling of surface states to bulk and to opposite surfaces is indispensable for understanding the observed MR. The {beta} parameter extracted from parallel field MR can in principle provide a figure of merit for searching TI compounds with more insulating bulk than existing materials.
Three dimensional topological insulators are bulk insulators with $mathbf{Z}_2$ topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunneling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi$_2$X$_3$ (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.
When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here, via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared to the case without e-h asymmetry, the SSs now bear not only a band asymmetry as that in the bulk but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap up to 70%. Our results signify the importance of e-h asymmetry in band engineering of TIs in the thin film limit.
Thin films of topological insulators (TI) attract large attention because of expected topological effects from the inter-surface hybridization of Dirac points. However, these effects may be depleted by unexpectedly large energy smearing $Gamma$ of surface Dirac points by the random potential of abundant Coulomb impurities. We show that in a typical TI film with large dielectric constant $sim 50$ sandwiched between two low dielectric constant layers, the Rytova-Chaplik-Entin-Keldysh modification of the Coulomb potential of a charge impurity allows a larger number of the film impurities to contribute to $Gamma$. As a result, $Gamma$ is large and independent of the TI film thickness $d$ for $d > 5$ nm. In thinner films $Gamma$ grows with decreasing $d$ due to reduction of screening by the hybridization gap. We study the surface conductivity away from the neutrality point and at the neutrality point. In the latter case, we find the maximum TI film thickness at which the hybridization gap is still able to make a TI film insulating and allow observation of the quantum spin Hall effect, $d_{max} sim 7$ nm.
Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the magnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology and magnetism in the non-equilibrium regime and extend optoelectronic device applications to topological materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا